{"title":"Pathological voice classification using MEEL features and SVM-TabNet model","authors":"Mohammed Zakariah , Muna Al-Razgan , Taha Alfakih","doi":"10.1016/j.specom.2024.103100","DOIUrl":null,"url":null,"abstract":"<div><p>In clinical settings, early diagnosis and objective assessment depend on the detection of voice pathology. To classify anomalous voices, this work uses an approach that combines the SVM-TabNet fusion model with MEEL (Mel-Frequency Energy Line) features. Further, the dataset consists of 1037 speech files, including recordings from people with laryngocele and Vox senilis as well as from healthy persons. Additionally, the main goal is to create an efficient classification model that can differentiate between normal and abnormal voice patterns. Modern techniques frequently lack the accuracy required for a precise diagnosis, which highlights the need for novel strategies. The suggested approach uses an SVM-TabNet fusion model for classification after feature extraction using MEEL characteristics. MEEL features provide extensive information for categorization by capturing complex patterns in audio transmissions. Moreover, by combining the advantages of SVM and TabNet models, classification performance is improved. Moreover, testing the model on test data yields remarkable results: 99.7 % accuracy, 0.992 F1 score, 0.996 precision, and 0.995 recall. Additional testing on additional datasets reliably validates outstanding performance, with 99.4 % accuracy, 0.99 F1 score, 0.998 precision, and 0.989 % recall. Furthermore, using the Saarbruecken Voice Database (SVD), the suggested methodology achieves an impressive accuracy of 99.97 %, demonstrating its durability and generalizability across many datasets. Overall, this work shows how the SVM-TabNet fusion model with MEEL characteristics may be used to accurately and consistently classify diseased voices, providing encouraging opportunities for clinical diagnosis and therapy tracking.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"162 ","pages":"Article 103100"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639324000724","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In clinical settings, early diagnosis and objective assessment depend on the detection of voice pathology. To classify anomalous voices, this work uses an approach that combines the SVM-TabNet fusion model with MEEL (Mel-Frequency Energy Line) features. Further, the dataset consists of 1037 speech files, including recordings from people with laryngocele and Vox senilis as well as from healthy persons. Additionally, the main goal is to create an efficient classification model that can differentiate between normal and abnormal voice patterns. Modern techniques frequently lack the accuracy required for a precise diagnosis, which highlights the need for novel strategies. The suggested approach uses an SVM-TabNet fusion model for classification after feature extraction using MEEL characteristics. MEEL features provide extensive information for categorization by capturing complex patterns in audio transmissions. Moreover, by combining the advantages of SVM and TabNet models, classification performance is improved. Moreover, testing the model on test data yields remarkable results: 99.7 % accuracy, 0.992 F1 score, 0.996 precision, and 0.995 recall. Additional testing on additional datasets reliably validates outstanding performance, with 99.4 % accuracy, 0.99 F1 score, 0.998 precision, and 0.989 % recall. Furthermore, using the Saarbruecken Voice Database (SVD), the suggested methodology achieves an impressive accuracy of 99.97 %, demonstrating its durability and generalizability across many datasets. Overall, this work shows how the SVM-TabNet fusion model with MEEL characteristics may be used to accurately and consistently classify diseased voices, providing encouraging opportunities for clinical diagnosis and therapy tracking.
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.