Late Breaking Results: Fortifying Neural Networks: Safeguarding Against Adversarial Attacks with Stochastic Computing

Faeze S. Banitaba, Sercan Aygun, M. Hassan Najafi
{"title":"Late Breaking Results: Fortifying Neural Networks: Safeguarding Against Adversarial Attacks with Stochastic Computing","authors":"Faeze S. Banitaba, Sercan Aygun, M. Hassan Najafi","doi":"arxiv-2407.04861","DOIUrl":null,"url":null,"abstract":"In neural network (NN) security, safeguarding model integrity and resilience\nagainst adversarial attacks has become paramount. This study investigates the\napplication of stochastic computing (SC) as a novel mechanism to fortify NN\nmodels. The primary objective is to assess the efficacy of SC to mitigate the\ndeleterious impact of attacks on NN results. Through a series of rigorous\nexperiments and evaluations, we explore the resilience of NNs employing SC when\nsubjected to adversarial attacks. Our findings reveal that SC introduces a\nrobust layer of defense, significantly reducing the susceptibility of networks\nto attack-induced alterations in their outcomes. This research contributes\nnovel insights into the development of more secure and reliable NN systems,\nessential for applications in sensitive domains where data integrity is of\nutmost concern.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In neural network (NN) security, safeguarding model integrity and resilience against adversarial attacks has become paramount. This study investigates the application of stochastic computing (SC) as a novel mechanism to fortify NN models. The primary objective is to assess the efficacy of SC to mitigate the deleterious impact of attacks on NN results. Through a series of rigorous experiments and evaluations, we explore the resilience of NNs employing SC when subjected to adversarial attacks. Our findings reveal that SC introduces a robust layer of defense, significantly reducing the susceptibility of networks to attack-induced alterations in their outcomes. This research contributes novel insights into the development of more secure and reliable NN systems, essential for applications in sensitive domains where data integrity is of utmost concern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最新成果:强化神经网络:利用随机计算防范恶意攻击
在神经网络(NN)安全方面,保障模型的完整性和抵御对抗性攻击的能力已变得至关重要。本研究调查了随机计算(SC)作为一种新机制在强化神经网络模型方面的应用。主要目的是评估随机计算在减轻攻击对 NN 结果的有害影响方面的功效。通过一系列严格的实验和评估,我们探索了采用 SC 的 NN 在受到对抗性攻击时的恢复能力。我们的研究结果表明,SC 引入了一个强大的防御层,大大降低了网络对攻击引起的结果改变的敏感性。这项研究为开发更安全、更可靠的 NN 系统提供了新的见解,这对于数据完整性最重要的敏感领域的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1