Dynamic Characteristics of the Droplet Impact on the Ultracold Surface under the Engine Cold Start Conditions

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2024-07-05 DOI:10.1134/s0015462824600068
S. Jin, W. Zhang, Z. Guo, Y. Yuan, Z. Shi, Y. Liu, J. Yan
{"title":"Dynamic Characteristics of the Droplet Impact on the Ultracold Surface under the Engine Cold Start Conditions","authors":"S. Jin, W. Zhang, Z. Guo, Y. Yuan, Z. Shi, Y. Liu, J. Yan","doi":"10.1134/s0015462824600068","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The impact of liquid droplets on the ultracold surface affects significantly the cold start performance of internal combustion engines but the splash and spreading characteristics after impacting on the ultracold surface are not clearly understood. Therefore, droplets with various physical parameters impacting on the Al–Si alloy surface have been selected for the study under various surface temperatures (–40°C ≤ <span>\\(~{{T}_{s}}~\\)</span> ≤ 25°C) and droplet impact velocities (0.96 m/s ≤ <span>\\(~{{V}_{0}}~\\)</span> ≤ 3.52 m/s). The ultracold surface (<span>\\({{T}_{s}}\\)</span> = –40°C) is beneficial for corona splash, and droplets with the higher Oh number impacting on the ultracold surface easily produce corona splash as the main splash pattern. The ultracold surface assisted in enhancing the stability of the levitated lamella formation, and avoided the effects of rough surfaces, so the upper splash criterion is established to predict the transition from spreading to splash. The decreasing surface temperature reduces the maximum spreading diameter (<span>\\({{{{\\beta }}}_{{{\\text{max}},{\\text{lt}}}}}\\)</span>) of low solidification point droplets (ethanol, <i>n</i>-propanol, and winter diesel). Based on the assumptions of qualitative temperature, the empirical correlation of the <span>\\({{{{\\beta }}}_{{{\\text{max}},{\\text{lt}}}}}\\)</span> is created for the <i>T</i><sub><i>s</i></sub> from 25 to –40°C.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0015462824600068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of liquid droplets on the ultracold surface affects significantly the cold start performance of internal combustion engines but the splash and spreading characteristics after impacting on the ultracold surface are not clearly understood. Therefore, droplets with various physical parameters impacting on the Al–Si alloy surface have been selected for the study under various surface temperatures (–40°C ≤ \(~{{T}_{s}}~\) ≤ 25°C) and droplet impact velocities (0.96 m/s ≤ \(~{{V}_{0}}~\) ≤ 3.52 m/s). The ultracold surface (\({{T}_{s}}\) = –40°C) is beneficial for corona splash, and droplets with the higher Oh number impacting on the ultracold surface easily produce corona splash as the main splash pattern. The ultracold surface assisted in enhancing the stability of the levitated lamella formation, and avoided the effects of rough surfaces, so the upper splash criterion is established to predict the transition from spreading to splash. The decreasing surface temperature reduces the maximum spreading diameter (\({{{{\beta }}}_{{{\text{max}},{\text{lt}}}}}\)) of low solidification point droplets (ethanol, n-propanol, and winter diesel). Based on the assumptions of qualitative temperature, the empirical correlation of the \({{{{\beta }}}_{{{\text{max}},{\text{lt}}}}}\) is created for the Ts from 25 to –40°C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发动机冷启动条件下液滴撞击超冷表面的动态特性
摘要液滴撞击超冷表面对内燃机的冷启动性能有很大影响,但液滴撞击超冷表面后的飞溅和扩散特性尚不清楚。因此,我们选择了不同物理参数的液滴在不同表面温度(-40°C ≤ \(~{{T}_{s}}~\) ≤ 25°C)和液滴撞击速度(0.96 m/s ≤ \(~{{V}_{0}}~\) ≤ 3.52 m/s)下撞击铝硅合金表面进行研究。超冷表面(\({{T}_{s}}\) = -40°C)有利于电晕飞溅,欧姆数较高的液滴撞击超冷表面时容易产生电晕飞溅,这是主要的飞溅模式。超冷表面有助于提高悬浮薄片形成的稳定性,避免粗糙表面的影响,因此建立了上飞溅准则来预测从扩散到飞溅的过渡。表面温度的降低减小了低凝固点液滴(乙醇、正丙醇和冬柴油)的最大铺展直径(\({{{{\beta }}}_{{text/{max}},{text{lt}}}}}/)。根据定性温度假设,为 25 至 -40°C 的 Ts 创建了 \({{{{\beta }}}_{{text{max}},{\text{lt}}}}}\) 的经验相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Numerical Study on the Effect of the Nozzle Pressure Ratio on the Starting Characteristics of the Axisymmetric Divergent Dual Throat Nozzle Aerodynamic Analysis of Hypersonic Gliding Vehicles with Wide-Speed Range Based on the Cuspidal Waverider Dynamic Characteristics of the Droplet Impact on the Ultracold Surface under the Engine Cold Start Conditions Three-Dimensional Continuum Model of Lumen Formation in a Cluster of Cells Immersed in an Extracellular Matrix: The Role of Mechanical Factors Experimental and Numerical Investigation of the Cavitation-Induced Suction Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1