UAV-Based Detection of Deciduous Tree Species Using Structural and Spectral Characteristics

IF 2.2 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Journal of the Indian Society of Remote Sensing Pub Date : 2024-07-09 DOI:10.1007/s12524-024-01944-9
Mohammad Hassan Naseri, Shaban Shataee Jouibary
{"title":"UAV-Based Detection of Deciduous Tree Species Using Structural and Spectral Characteristics","authors":"Mohammad Hassan Naseri, Shaban Shataee Jouibary","doi":"10.1007/s12524-024-01944-9","DOIUrl":null,"url":null,"abstract":"<p>The use of remote sensing technology is essential for identifying and mapping tree species. In species management, remote sensing tools like Unmanned Aerial Vehicles (UAVs) are used because of their short-cycle replication, high-resolution images, and 3D capabilities. The main objectives of this research were to evaluate the ability to use UAV images and the reliability of three Nearest Neighbor (NN), Random Forest (RF), and Decision Tree (DT) algorithms, as well as the ability to differentiate deciduous tree species based on their spectral and structural characteristics. UAV images were obtained and processed, and 3D canopy crown structure features, i.e. DSM, DTM, CHM, and mean slope of the canopy crown, were prepared for object-based classification. The results showed that adding the structural feature of CHM, DSM, and slope, as combined with multispectral bands, could improve the results compared to using only multispectral bands for NN and RF algorithms. However, the DT algorithm provided the highest classification accuracy with an overall accuracy of 69.04% and a Kappa coefficient of 0.595, using spectral characteristics of the main bands, vegetation indices, and texture analysis. In contrast to the DT algorithm, which does not improve classification results by using tree structural properties, CHM shape properties in combination with their spectral properties can improve classification results. Overall, in dense deciduous forests where all trees have normal spectral reflections during the growing season, UAV images and structural features such as mean slope provide valuable information.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01944-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The use of remote sensing technology is essential for identifying and mapping tree species. In species management, remote sensing tools like Unmanned Aerial Vehicles (UAVs) are used because of their short-cycle replication, high-resolution images, and 3D capabilities. The main objectives of this research were to evaluate the ability to use UAV images and the reliability of three Nearest Neighbor (NN), Random Forest (RF), and Decision Tree (DT) algorithms, as well as the ability to differentiate deciduous tree species based on their spectral and structural characteristics. UAV images were obtained and processed, and 3D canopy crown structure features, i.e. DSM, DTM, CHM, and mean slope of the canopy crown, were prepared for object-based classification. The results showed that adding the structural feature of CHM, DSM, and slope, as combined with multispectral bands, could improve the results compared to using only multispectral bands for NN and RF algorithms. However, the DT algorithm provided the highest classification accuracy with an overall accuracy of 69.04% and a Kappa coefficient of 0.595, using spectral characteristics of the main bands, vegetation indices, and texture analysis. In contrast to the DT algorithm, which does not improve classification results by using tree structural properties, CHM shape properties in combination with their spectral properties can improve classification results. Overall, in dense deciduous forests where all trees have normal spectral reflections during the growing season, UAV images and structural features such as mean slope provide valuable information.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用结构和光谱特征进行无人机落叶树种探测
遥感技术的使用对于识别和绘制树种地图至关重要。在树种管理中,无人机(UAV)等遥感工具因其短周期复制、高分辨率图像和三维功能而被广泛使用。本研究的主要目的是评估使用无人机图像的能力和三种最近邻(NN)、随机森林(RF)和决策树(DT)算法的可靠性,以及根据光谱和结构特征区分落叶树种的能力。研究人员获取并处理了无人机图像,制备了三维树冠结构特征,即 DSM、DTM、CHM 和树冠平均坡度,用于基于对象的分类。结果表明,与仅使用多光谱波段的 NN 算法和 RF 算法相比,结合多光谱波段添加 CHM、DSM 和坡度等结构特征可改善结果。然而,DT 算法利用主要波段的光谱特征、植被指数和纹理分析,提供了最高的分类准确率,总体准确率为 69.04%,Kappa 系数为 0.595。与 DT 算法相比,DT 算法利用树木的结构特性并不能改善分类结果,而 CHM 的形状特性与其光谱特性相结合则可以改善分类结果。总之,在落叶密林中,所有树木在生长季节都有正常的光谱反射,无人机图像和结构特征(如平均坡度)可提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Indian Society of Remote Sensing
Journal of the Indian Society of Remote Sensing ENVIRONMENTAL SCIENCES-REMOTE SENSING
CiteScore
4.80
自引率
8.00%
发文量
163
审稿时长
7 months
期刊介绍: The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.
期刊最新文献
A Heuristic Approach of Radiometric Calibration for Ocean Colour Sensors: A Case Study Using ISRO’s Ocean Colour Monitor-2 Farmland Extraction from UAV Remote Sensing Images Based on Improved SegFormer Model Self Organizing Map based Land Cover Clustering for Decision-Level Jaccard Index and Block Activity based Pan-Sharpened Images Improved Building Extraction from Remotely Sensed Images by Integration of Encode–Decoder and Edge Enhancement Models Enhancing Change Detection Accuracy in Remote Sensing Images Through Feature Optimization and Game Theory Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1