E. Suganya, T. Prabhu, Satheeshkumar Palanisamy, Ayodeji Olalekan Salau
{"title":"Design and performance analysis of L-slotted MIMO antenna with improved isolation using defected ground structure for S-band satellite application","authors":"E. Suganya, T. Prabhu, Satheeshkumar Palanisamy, Ayodeji Olalekan Salau","doi":"10.1002/dac.5901","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The increasing prevalence of MIMO technology in wireless communication networks is attributed to its ability to augment system capacity and dependability. Consequently, there is a notable enthusiasm for the advancement and implementation of S-band applications. Nevertheless, the mutual coupling between numerous antennas presents a crucial obstacle to MIMO system performance. This paper presents a novel technique that utilizes a defective ground structure with parasitic components to increase antenna isolation and gain. Additionally, an L-shaped slot is incorporated into the patch element to enhance the antennas impedance bandwidth. Antennas are intentionally placed in a perpendicular arrangement to minimize the impact of the coupling effects. The antenna exhibits an impedance bandwidth in the frequency range of 2.62–2.79 GHz. Furthermore, the utilization of a four-element MIMO antenna setup with a defective ground structure yields outstanding isolation properties, with values notably lower than −25 dB. To achieve an optimal MIMO performance, we assessed various diversity parameters, including diversity gain, channel capacity loss, total active reflection coefficient, and envelope correlation coefficient. The parameter values were within acceptable limits (ECC < 0.04, DG = 10 dB, TARC < 0 dB, and CCL < 0.1 bits/s/Hz). This research paper therefore offers essential insights into the design and optimization of MIMO antennas specifically for 2.7 GHz applications.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 16","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5901","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of MIMO technology in wireless communication networks is attributed to its ability to augment system capacity and dependability. Consequently, there is a notable enthusiasm for the advancement and implementation of S-band applications. Nevertheless, the mutual coupling between numerous antennas presents a crucial obstacle to MIMO system performance. This paper presents a novel technique that utilizes a defective ground structure with parasitic components to increase antenna isolation and gain. Additionally, an L-shaped slot is incorporated into the patch element to enhance the antennas impedance bandwidth. Antennas are intentionally placed in a perpendicular arrangement to minimize the impact of the coupling effects. The antenna exhibits an impedance bandwidth in the frequency range of 2.62–2.79 GHz. Furthermore, the utilization of a four-element MIMO antenna setup with a defective ground structure yields outstanding isolation properties, with values notably lower than −25 dB. To achieve an optimal MIMO performance, we assessed various diversity parameters, including diversity gain, channel capacity loss, total active reflection coefficient, and envelope correlation coefficient. The parameter values were within acceptable limits (ECC < 0.04, DG = 10 dB, TARC < 0 dB, and CCL < 0.1 bits/s/Hz). This research paper therefore offers essential insights into the design and optimization of MIMO antennas specifically for 2.7 GHz applications.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.