Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Numerical Algorithms Pub Date : 2024-07-10 DOI:10.1007/s11075-024-01861-5
Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo
{"title":"Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes","authors":"Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo","doi":"10.1007/s11075-024-01861-5","DOIUrl":null,"url":null,"abstract":"<p>The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain <span>\\((0, \\infty )\\)</span>, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term <span>\\(\\alpha _{-1} x^{-1}\\)</span> and a corrective mapping <span>\\(\\Phi _h\\)</span> in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size <span>\\(h&gt;0\\)</span>) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"17 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01861-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain \((0, \infty )\), which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term \(\alpha _{-1} x^{-1}\) and a corrective mapping \(\Phi _h\) in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size \(h>0\)) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
艾特-萨哈利亚模型的无条件保正近似:米尔斯坦型显式方案
本文旨在设计和分析数学金融中出现的、在正域 \((0, \infty )\) 中演化的广义 Aït-Sahalia 型模型的高效一阶强方案,该模型具有超线性增长的扩散项和在原点炸毁的高度非线性漂移。如此复杂的模型结构不可避免地给时间离散的构建和收敛分析带来了极大的困难。通过在项 \(\α _{-1} x^{-1}\) 中加入隐含性以及在递归中加入校正映射 \(\Phi_h\),我们开发了一类新的显式和无条件保正的(即对于任意步长 \(h>0\))米尔斯坦型方案。的米尔斯坦类型方案。在非临界和一般临界情况下,我们引入了一种新方法来分析新方案的均方误差边界,而不依赖于数值近似的先验高阶矩边界。所提出的方案达到了预期的一阶均方收敛。上述理论保证可用于证明多级蒙特卡罗方法的最佳复杂性。最后还提供了数值实验来验证理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
期刊最新文献
Numerical solution of nonclassical boundary value problems A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations Communication in multiplex transportation networks Homogeneous multigrid method for hybridizable interior penalty method A note on generalized Floater–Hormann interpolation at arbitrary distributions of nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1