Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain

IF 1.8 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Mathematics of Control Signals and Systems Pub Date : 2024-06-06 DOI:10.1007/s00498-024-00389-2
Michael Günther, Birgit Jacob, Claudia Totzeck
{"title":"Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain","authors":"Michael Günther, Birgit Jacob, Claudia Totzeck","doi":"10.1007/s00498-024-00389-2","DOIUrl":null,"url":null,"abstract":"<p>We present a gradient-based calibration algorithm to identify the system matrices of a linear port-Hamiltonian system from given input–output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection [17] demonstrate the feasibility of the approach.</p>","PeriodicalId":51123,"journal":{"name":"Mathematics of Control Signals and Systems","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Control Signals and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00498-024-00389-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a gradient-based calibration algorithm to identify the system matrices of a linear port-Hamiltonian system from given input–output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection [17] demonstrate the feasibility of the approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据驱动的时域端口-哈密尔顿系统的邻接校准
我们提出了一种基于梯度的校准算法,从给定的输入输出时间数据中识别线性端口-哈密尔顿系统的系统矩阵。为了采用直接的结构保护方法,我们采用了常微分方程优化控制技术,并定义了一个约束优化问题。我们讨论了输入到状态的稳定性,这是实现最优控制的关键一步。此外,考虑到端口-哈密尔顿结构,我们还推导出了一阶最优系统。事实上,所提出的方法在整个优化迭代过程中保持了系统矩阵的倾斜对称性和正(半)定义性。使用扰动和未扰动合成数据的数值结果,以及 PHS 基准集 [17] 中的一个示例,都证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics of Control Signals and Systems
Mathematics of Control Signals and Systems 工程技术-工程:电子与电气
CiteScore
2.90
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Mathematics of Control, Signals, and Systems (MCSS) is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing. Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations. Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.
期刊最新文献
Overcoming limitations in stability theorems based on multiple Nussbaum functions Stability analysis of systems with delay-dependent coefficients and commensurate delays Controllability with one scalar control of a system of interaction between the Navier–Stokes system and a damped beam equation On the relations between stability optimization of linear time-delay systems and multiple rightmost characteristic roots The local representation of incrementally scattering passive nonlinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1