Irena Lasiecka, Rasika Mahawattege, Roberto Triggiani
{"title":"Boundary Stabilization for a Heat-Kelvin-Voigt Unstable Interaction Model, with Control and Partial Observation Localized at the Interface Only","authors":"Irena Lasiecka, Rasika Mahawattege, Roberto Triggiani","doi":"10.1007/s10957-024-02477-4","DOIUrl":null,"url":null,"abstract":"<p>A prototype model for a Fluid–Structure interaction is considered. We aim to stabilize [enhance stability of] the model by having access only to a portion of the state. Toward this goal we shall construct a compensator-based Luenberger design, with the following two goals: (1) reconstruct the original system asymptotically by tracking partial information about the full state, (2) stabilize the original unstable system by feeding an admissible control based on a system which is obtained from the compensator. The ultimate result is boundary control/stabilization of partially observed and originally unstable fluid–structure interaction with restricted information on the current state and without any knowledge of the initial condition. This prevents applicability of known methods in either open-loop or closed loop stabilization/control.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02477-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A prototype model for a Fluid–Structure interaction is considered. We aim to stabilize [enhance stability of] the model by having access only to a portion of the state. Toward this goal we shall construct a compensator-based Luenberger design, with the following two goals: (1) reconstruct the original system asymptotically by tracking partial information about the full state, (2) stabilize the original unstable system by feeding an admissible control based on a system which is obtained from the compensator. The ultimate result is boundary control/stabilization of partially observed and originally unstable fluid–structure interaction with restricted information on the current state and without any knowledge of the initial condition. This prevents applicability of known methods in either open-loop or closed loop stabilization/control.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.