Scanning-Laser-Based Microstereolithography of Microfluidic Chips with Micron Resolution

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-09 DOI:10.1002/admt.202400047
Christof Rein, Keynaz Kamranikia, Raymonde Council, Pegah Pezeshkpour, Frederik Kotz-Helmer, Bastian E. Rapp
{"title":"Scanning-Laser-Based Microstereolithography of Microfluidic Chips with Micron Resolution","authors":"Christof Rein,&nbsp;Keynaz Kamranikia,&nbsp;Raymonde Council,&nbsp;Pegah Pezeshkpour,&nbsp;Frederik Kotz-Helmer,&nbsp;Bastian E. Rapp","doi":"10.1002/admt.202400047","DOIUrl":null,"url":null,"abstract":"<p>The constant improvement of stereolithography (SL) in terms of achievable resolution and printing time has sparked high expectations that SL will enable the rapid prototyping of truly microfluidic chips with features below 100 µm. However, most commercial high-resolution stereolithography devices are based on Digital Light Processing (DLP) and thus sacrifice lateral printing size for resolution. Consequently, even 10 years after the advent of microstereolithography there is no commercialized 3D printing system that can effectively fulfill all the demands to replace soft lithography for microfluidic prototyping. In this work, for the first time, This study demonstrates that a commercial laser-based stereolithography device is capable of manufacturing microfluidic chips with embedded channels smaller than 100 µm with a footprint of 7.24 × 0.3 cm<sup>2</sup>. A chip fabricated in poly(ethylene glycol) diacrylate (PEGDA) that can readily be used for fluid mixing, is presented in this study. This research shows that the accessibility of high-resolution chips with footprints of several cm<sup>2</sup>, using laser-based stereolithography, enables the manufacturing of truly microfluidic systems with high impact on prototyping and manufacturing.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The constant improvement of stereolithography (SL) in terms of achievable resolution and printing time has sparked high expectations that SL will enable the rapid prototyping of truly microfluidic chips with features below 100 µm. However, most commercial high-resolution stereolithography devices are based on Digital Light Processing (DLP) and thus sacrifice lateral printing size for resolution. Consequently, even 10 years after the advent of microstereolithography there is no commercialized 3D printing system that can effectively fulfill all the demands to replace soft lithography for microfluidic prototyping. In this work, for the first time, This study demonstrates that a commercial laser-based stereolithography device is capable of manufacturing microfluidic chips with embedded channels smaller than 100 µm with a footprint of 7.24 × 0.3 cm2. A chip fabricated in poly(ethylene glycol) diacrylate (PEGDA) that can readily be used for fluid mixing, is presented in this study. This research shows that the accessibility of high-resolution chips with footprints of several cm2, using laser-based stereolithography, enables the manufacturing of truly microfluidic systems with high impact on prototyping and manufacturing.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扫描激光的微流控芯片微立体光刻技术,分辨率达微米级
立体光刻技术(SL)在可实现的分辨率和打印时间方面的不断改进,引发了人们的高度期待,认为 SL 能够实现真正意义上的微流控芯片的快速原型制作,其特征小于 100 微米。然而,大多数商用高分辨率立体光刻设备都基于数字光处理技术(DLP),因此牺牲了横向打印尺寸来换取分辨率。因此,即使在微立体光刻技术问世 10 年后的今天,仍没有一种商业化的 3D 打印系统能有效满足微流体原型制作的所有需求,从而取代软光刻技术。这项研究首次证明,基于激光的商用立体光刻设备能够制造嵌入通道小于 100 微米、占地面积为 7.24 × 0.3 平方厘米的微流控芯片。本研究介绍了一种用聚(乙二醇)二丙烯酸酯(PEGDA)制造的芯片,可随时用于流体混合。这项研究表明,利用基于激光的立体光刻技术,可以获得占地面积为几平方厘米的高分辨率芯片,从而能够制造出真正的微流体系统,对原型设计和生产具有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1