Robust point and variance estimation for meta-analyses with selective reporting and dependent effect sizes

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-07-09 DOI:10.1111/2041-210X.14377
Yefeng Yang, Malgorzata Lagisz, Coralie Williams, Daniel W. A. Noble, Jinming Pan, Shinichi Nakagawa
{"title":"Robust point and variance estimation for meta-analyses with selective reporting and dependent effect sizes","authors":"Yefeng Yang,&nbsp;Malgorzata Lagisz,&nbsp;Coralie Williams,&nbsp;Daniel W. A. Noble,&nbsp;Jinming Pan,&nbsp;Shinichi Nakagawa","doi":"10.1111/2041-210X.14377","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14377","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14377","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对具有选择性报告和依赖效应大小的荟萃分析进行稳健的点和方差估计
荟萃分析是以证据为基础的知识的定量综合,不仅影响研究趋势,还影响生物学的政策和实践。然而,选择性报告和统计依赖性这两个统计问题会严重扭曲荟萃分析的参数估计和推断。在此,我们重新分析了 448 项元分析,展示了一种新的两步程序,以应对生物元分析中经常同时出现的两个常见挑战:发表偏倚和非独立性。首先,我们在广义最小二乘法估计器下采用偏倚稳健加权方案,以获得对选择性报告更稳健的平均效应大小。然后,我们使用集群稳健方差估计来考虑统计依赖性,从而减少标准误差估计中的偏差,确保有效的统计推断。在存在选择性报告的情况下,我们方法的第一步在估计平均效应大小方面的表现与现有的发表偏倚调整方法相当。这种等效性在两种发表偏倚选择过程中都适用。第二步实现了与多层次元分析模型一致的标准误差估算,这是一种基准方法,可充分控制I类错误率,以处理多个统计依赖效应大小。对 448 项元分析的重新分析表明,忽略这两个问题往往会使效应大小平均高估 110%,标准误差平均低估 120%。为了便于实施,我们开发了一个网站,其中包括分步教程。用提出的方法作为敏感性分析来补充当前的荟萃分析工作流程,可以促进定量证据综合向更稳健的方法过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Spatially explicit predictions using spatial eigenvector maps Cover Picture and Issue Information ChatGPT is likely reducing opportunity for support, friendship and learned kindness in research Should we still teach or learn coding? A postgraduate student perspective on the use of large language models for coding in ecology and evolution Pressure to publish introduces large-language model risks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1