Evaluating the impact of eccentric loading on strip footing above horseshoe tunnels in rock mass using adaptive finite element limit analysis and machine learning
{"title":"Evaluating the impact of eccentric loading on strip footing above horseshoe tunnels in rock mass using adaptive finite element limit analysis and machine learning","authors":"Aayush Kumar, Vinay Bhushan Chauhan","doi":"10.1007/s12145-024-01380-w","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the ultimate bearing capacity (<i>UBC</i>) of a footing subjected to an eccentric load situated above an unlined horseshoe-shaped tunnel in the rock mass, following the Generalized Hoek-Brown (<i>GHB</i>) failure criterion. A reduction factor (<i>R</i><sub><i>f</i></sub>) is introduced to investigate the impact of the tunnel on the <i>UBC</i> of the footing. <i>R</i><sub><i>f</i></sub> is determined using upper and lower bound analyses with adaptive finite-element limit analysis. The study examines the influence of several independent variables, including normalized load eccentricity (<i>e/B</i>), normalized vertical and horizontal distances (<i>δ/B</i> and <i>H/B</i>) of the footing from the tunnel, tunnel size (<i>W/B</i>), and other rock mass parameters. It was found that all these parameters significantly affect the behavior of tunnel-footing interaction depending on the range of varying parameters. The findings of the study indicate that the critical depth (when <i>R</i><sub><i>f</i></sub> is nearly 1) of the tunnel decreases with increasing load eccentricity. The critical depth is found to be <i>δ/B</i> ≥ 2 for <i>e/B</i> ≤ 0.2 and <i>δ/B</i> ≥ 1.5 for <i>e/B</i> ≥ 0.3, regardless of <i>H/B</i> ratios. Additionally, the <i>GHB</i> parameters of the rock mass significantly influence the interaction between the tunnel and the footing. Moreover, this study identifies some typical potential failure modes depending on the tunnel position. The typical potential failure modes of the footing include punching failure, cylindrical shear wedge failure, and Prandtl-type failure. This study also incorporates soft computing techniques and formulates empirical equations to predict <i>R</i><sub><i>f</i></sub> using artificial neural networks (<i>ANNs</i>) and multiple linear regression (<i>MLR</i>).</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"5 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01380-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the ultimate bearing capacity (UBC) of a footing subjected to an eccentric load situated above an unlined horseshoe-shaped tunnel in the rock mass, following the Generalized Hoek-Brown (GHB) failure criterion. A reduction factor (Rf) is introduced to investigate the impact of the tunnel on the UBC of the footing. Rf is determined using upper and lower bound analyses with adaptive finite-element limit analysis. The study examines the influence of several independent variables, including normalized load eccentricity (e/B), normalized vertical and horizontal distances (δ/B and H/B) of the footing from the tunnel, tunnel size (W/B), and other rock mass parameters. It was found that all these parameters significantly affect the behavior of tunnel-footing interaction depending on the range of varying parameters. The findings of the study indicate that the critical depth (when Rf is nearly 1) of the tunnel decreases with increasing load eccentricity. The critical depth is found to be δ/B ≥ 2 for e/B ≤ 0.2 and δ/B ≥ 1.5 for e/B ≥ 0.3, regardless of H/B ratios. Additionally, the GHB parameters of the rock mass significantly influence the interaction between the tunnel and the footing. Moreover, this study identifies some typical potential failure modes depending on the tunnel position. The typical potential failure modes of the footing include punching failure, cylindrical shear wedge failure, and Prandtl-type failure. This study also incorporates soft computing techniques and formulates empirical equations to predict Rf using artificial neural networks (ANNs) and multiple linear regression (MLR).
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.