{"title":"Permutation-invariant linear classifiers","authors":"Ludwig Lausser, Robin Szekely, Hans A. Kestler","doi":"10.1007/s10994-024-06561-8","DOIUrl":null,"url":null,"abstract":"<p>Invariant concept classes form the backbone of classification algorithms immune to specific data transformations, ensuring consistent predictions regardless of these alterations. However, this robustness can come at the cost of limited access to the original sample information, potentially impacting generalization performance. This study introduces an addition to these classes—the permutation-invariant linear classifiers. Distinguished by their structural characteristics, permutation-invariant linear classifiers are unaffected by permutations on feature vectors, a property not guaranteed by other non-constant linear classifiers. The study characterizes this new concept class, highlighting its constant capacity, independent of input dimensionality. In practical assessments using linear support vector machines, the permutation-invariant classifiers exhibit superior performance in permutation experiments on artificial datasets and real mutation profiles. Interestingly, they outperform general linear classifiers not only in permutation experiments but also in permutation-free settings, surpassing unconstrained counterparts. Additionally, findings from real mutation profiles support the significance of tumor mutational burden as a biomarker.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"65 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06561-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Invariant concept classes form the backbone of classification algorithms immune to specific data transformations, ensuring consistent predictions regardless of these alterations. However, this robustness can come at the cost of limited access to the original sample information, potentially impacting generalization performance. This study introduces an addition to these classes—the permutation-invariant linear classifiers. Distinguished by their structural characteristics, permutation-invariant linear classifiers are unaffected by permutations on feature vectors, a property not guaranteed by other non-constant linear classifiers. The study characterizes this new concept class, highlighting its constant capacity, independent of input dimensionality. In practical assessments using linear support vector machines, the permutation-invariant classifiers exhibit superior performance in permutation experiments on artificial datasets and real mutation profiles. Interestingly, they outperform general linear classifiers not only in permutation experiments but also in permutation-free settings, surpassing unconstrained counterparts. Additionally, findings from real mutation profiles support the significance of tumor mutational burden as a biomarker.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.