Fatimah Alzubaidi, James E. McClure, Håkon Pedersen, Alex Hansen, Carl Fredrik Berg, Peyman Mostaghimi, Ryan T. Armstrong
{"title":"The Impact of Wettability on the Co-moving Velocity of Two-Fluid Flow in Porous Media","authors":"Fatimah Alzubaidi, James E. McClure, Håkon Pedersen, Alex Hansen, Carl Fredrik Berg, Peyman Mostaghimi, Ryan T. Armstrong","doi":"10.1007/s11242-024-02102-y","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of wettability on the co-moving velocity of two-fluid flow in porous media is analyzed herein. The co-moving velocity, developed by Roy et al. (Front Phys 8:4, 2022), is a novel representation of the flow behavior of two fluids through porous media. Our study aims to better understand the behavior of the co-moving velocity by analyzing simulation data under various wetting conditions. We analyzed 46 relative permeability curves based on the Lattice–Boltzmann color fluid model and two experimentally determined relative permeability curves. The analysis of the relative permeability data followed the methodology proposed by Roy et al. (Front Phys 8:4, 2022) to reconstruct a constitutive equation for the co-moving velocity. Surprisingly, the coefficients of the constitutive equation were found to be nearly the same for all wetting conditions. On the basis of these results, a simple approach was proposed to reconstruct the relative permeability of the oil phase using only the co-moving velocity relationship and the relative permeability of the water phase. This proposed method provides new information on the interdependence of the relative permeability curves, which has implications for the history matching of production data and the solution of the associated inverse problem. The research findings contribute to a better understanding of the impact of wettability on fluid flow in porous media and provide a practical approach for estimating relative permeability based on the co-moving velocity relationship, which has never been shown before.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02102-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02102-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of wettability on the co-moving velocity of two-fluid flow in porous media is analyzed herein. The co-moving velocity, developed by Roy et al. (Front Phys 8:4, 2022), is a novel representation of the flow behavior of two fluids through porous media. Our study aims to better understand the behavior of the co-moving velocity by analyzing simulation data under various wetting conditions. We analyzed 46 relative permeability curves based on the Lattice–Boltzmann color fluid model and two experimentally determined relative permeability curves. The analysis of the relative permeability data followed the methodology proposed by Roy et al. (Front Phys 8:4, 2022) to reconstruct a constitutive equation for the co-moving velocity. Surprisingly, the coefficients of the constitutive equation were found to be nearly the same for all wetting conditions. On the basis of these results, a simple approach was proposed to reconstruct the relative permeability of the oil phase using only the co-moving velocity relationship and the relative permeability of the water phase. This proposed method provides new information on the interdependence of the relative permeability curves, which has implications for the history matching of production data and the solution of the associated inverse problem. The research findings contribute to a better understanding of the impact of wettability on fluid flow in porous media and provide a practical approach for estimating relative permeability based on the co-moving velocity relationship, which has never been shown before.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).