Sono-assisted Adsorption of Methyl Violet 2B Using a Magnetic Kaolin/TiO2/γ-Fe2O3 Nano Composite

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-07-10 DOI:10.1007/s11270-024-07334-8
Serap Fındık
{"title":"Sono-assisted Adsorption of Methyl Violet 2B Using a Magnetic Kaolin/TiO2/γ-Fe2O3 Nano Composite","authors":"Serap Fındık","doi":"10.1007/s11270-024-07334-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, the efficacy of sono-assisted adsorption for the removal of methyl violet 2B (MV-2B) was investigated. A magnetic adsorbent was synthesized using kaolin and TiO<sub>2</sub>, designated as KTF. Various analyses including scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Zeta potential and vibrating sample magnetometer (VSM) were conducted to characterize the structure of KTF. The BET surface area and pore volume of KTF were determined to be 65.279 m<sup>2</sup>/g and 0.072 cm<sup>3</sup>/g, respectively. VSM analysis confirmed the superparamagnetic property of KTF. The effect of contact time, initial MV-2B concentration, KTF amount, temperature, ionic strength and initial pH of the solution on the sono-assisted adsorption of MV-2B was investigated. Sono-assisted removal of MV-2B was achieved at a rate of 85.6% under optimal conditions: original pH, KTF amount of 0.2 g/100 mL, initial MV-2B concentration of 20 mg/L, contact time of 15 min, and temperature of 22 °C. Conversely, lower removal efficiencies were observed with conventional adsorption methods employing shaking (37%) and stirring (60.5%). The kinetics of sono-assisted MV-2B removal followed a pseudo-second order model, while the Freundlich isotherm model exhibited a superior fit (R<sup>2</sup> = 0.985) in describing the equilibrium behavior compared to Langmuir and Temkin models.</p>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s11270-024-07334-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the efficacy of sono-assisted adsorption for the removal of methyl violet 2B (MV-2B) was investigated. A magnetic adsorbent was synthesized using kaolin and TiO2, designated as KTF. Various analyses including scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Zeta potential and vibrating sample magnetometer (VSM) were conducted to characterize the structure of KTF. The BET surface area and pore volume of KTF were determined to be 65.279 m2/g and 0.072 cm3/g, respectively. VSM analysis confirmed the superparamagnetic property of KTF. The effect of contact time, initial MV-2B concentration, KTF amount, temperature, ionic strength and initial pH of the solution on the sono-assisted adsorption of MV-2B was investigated. Sono-assisted removal of MV-2B was achieved at a rate of 85.6% under optimal conditions: original pH, KTF amount of 0.2 g/100 mL, initial MV-2B concentration of 20 mg/L, contact time of 15 min, and temperature of 22 °C. Conversely, lower removal efficiencies were observed with conventional adsorption methods employing shaking (37%) and stirring (60.5%). The kinetics of sono-assisted MV-2B removal followed a pseudo-second order model, while the Freundlich isotherm model exhibited a superior fit (R2 = 0.985) in describing the equilibrium behavior compared to Langmuir and Temkin models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用磁性高岭土/TiO2/γ-Fe2O3 纳米复合材料对甲基紫 2B 进行声助吸附
本研究探讨了声波辅助吸附法去除甲基紫 2B(MV-2B)的效果。利用高岭土和 TiO2 合成了一种磁性吸附剂,命名为 KTF。为了表征 KTF 的结构,进行了各种分析,包括扫描电子显微镜与能量色散光谱(SEM-EDS)、布鲁诺-艾美特-泰勒(BET)、傅立叶变换红外光谱(FTIR)、X 射线粉末衍射(XRD)、Zeta 电位和振动样品磁力计(VSM)。结果表明,KTF 的 BET 表面积和孔体积分别为 65.279 m2/g 和 0.072 cm3/g。VSM 分析证实了 KTF 的超顺磁性。研究了接触时间、MV-2B 初始浓度、KTF 量、温度、离子强度和溶液初始 pH 对声波辅助吸附 MV-2B 的影响。在最佳条件下:原始 pH 值、KTF 量为 0.2 克/100 毫升、MV-2B 初始浓度为 20 毫克/升、接触时间为 15 分钟、温度为 22 ℃,声波辅助去除率达到 85.6%。相反,采用摇动(37%)和搅拌(60.5%)的传统吸附方法的去除率较低。声波辅助去除 MV-2B 的动力学遵循伪二阶模型,与 Langmuir 和 Temkin 模型相比,Freundlich 等温线模型在描述平衡行为方面表现出更高的拟合度(R2 = 0.985)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
A New Method for Groundwater Pollution Investigation Toxicology Risk Assessment of Uranium in Drinking water of Ganderbal and Budgam Districts of Jammu and Kashmir, India Remediation of Neonicotinoid Polluted Environment by Silica Hybrid Nanosorbents Optimization of Polysulfone Based Membranes Using Charged Graphite Nano Platelets for Separation of Manganese and Chromium (VI) From Water Ensuring Sustainable Agricultural Practices: Treated Wastewater Quality and Its Impact on Groundwater for Irrigation in Oman
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1