Cai J. T. Ladd, Alejandra G. Vovides, Marie-Christin Wimmler, Christian Schwarz, Thorsten Balke
{"title":"Monitoring tides, currents, and waves along coastal habitats using the Mini Buoy","authors":"Cai J. T. Ladd, Alejandra G. Vovides, Marie-Christin Wimmler, Christian Schwarz, Thorsten Balke","doi":"10.1002/lom3.10631","DOIUrl":null,"url":null,"abstract":"<p>Intertidal habitats are shaped by the actions of tides and waves which are difficult to monitor in shallow water. To address this challenge, the “Mini Buoy” and associated open-source App were recently developed for the low-cost and long-term monitoring of tidal inundation and current velocities simultaneously. The Mini Buoy is a bottom-mounted float that measures tilt to infer near-bed hydrodynamics. Here, we present significant updates to the Mini Buoy and App. Two new Mini Buoy designs were calibrated: the “Pendant” that requires minimal assembly for deployment, and the “B4+” that can also measure wave orbital velocity. Comparisons against industry-standard water-level and velocity sensors deployed in the field showed that each new design was effective at detecting tidal inundation (overall accuracy of 86–97%) and current velocities (<i>R</i><sup>2</sup> = 0.73–0.91; accuracies of ± 0.14–0.22 m s<sup>−1</sup>; detection limits between 0.02 and 0.8 m s<sup>−1</sup>). The B4+ could reasonably measure wave orbital velocities (<i>R</i><sup>2</sup> = 0.56; accuracies of ± 0.18 m s<sup>−1</sup>; detection limits between 0.02 and 0.8 m s<sup>−1</sup>). Reducing the sampling rate to prolong survey durations did not markedly reduce the precision of velocity measurements, except in the original Mini Buoy design (uncertainty increased by ± 2.11 m s<sup>−1</sup> from 1 to 10 s sampling). The updated App enhances user experience, accepts data from any Mini Buoy design, is suitable for generic use across any tidal setting, and presents multiple options to understand and contrast local hydrodynamic regimes. Improvements to the Mini Buoy designs and App offer greater opportunities in monitoring hydrodynamics for purposes including ecosystem restoration and flood risk management.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10631","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10631","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intertidal habitats are shaped by the actions of tides and waves which are difficult to monitor in shallow water. To address this challenge, the “Mini Buoy” and associated open-source App were recently developed for the low-cost and long-term monitoring of tidal inundation and current velocities simultaneously. The Mini Buoy is a bottom-mounted float that measures tilt to infer near-bed hydrodynamics. Here, we present significant updates to the Mini Buoy and App. Two new Mini Buoy designs were calibrated: the “Pendant” that requires minimal assembly for deployment, and the “B4+” that can also measure wave orbital velocity. Comparisons against industry-standard water-level and velocity sensors deployed in the field showed that each new design was effective at detecting tidal inundation (overall accuracy of 86–97%) and current velocities (R2 = 0.73–0.91; accuracies of ± 0.14–0.22 m s−1; detection limits between 0.02 and 0.8 m s−1). The B4+ could reasonably measure wave orbital velocities (R2 = 0.56; accuracies of ± 0.18 m s−1; detection limits between 0.02 and 0.8 m s−1). Reducing the sampling rate to prolong survey durations did not markedly reduce the precision of velocity measurements, except in the original Mini Buoy design (uncertainty increased by ± 2.11 m s−1 from 1 to 10 s sampling). The updated App enhances user experience, accepts data from any Mini Buoy design, is suitable for generic use across any tidal setting, and presents multiple options to understand and contrast local hydrodynamic regimes. Improvements to the Mini Buoy designs and App offer greater opportunities in monitoring hydrodynamics for purposes including ecosystem restoration and flood risk management.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.