{"title":"Numerical Study on Thermal Runaway of LFP batteries Triggered by Low Temperature Heating","authors":"Chao An, Jiawei Zhai, Zhi Luo, Zhiguo Lei","doi":"10.1007/s10694-024-01609-6","DOIUrl":null,"url":null,"abstract":"<div><p>With the wide application of electric vehicles (EVs) in cold areas, low temperature heating of battery is becoming more and more mature, and the way of battery bottom heating is also widely used in EVs. Nevertheless, the battery is not completely safe during the heating process, and there may be a risk that the heating plate trigger the battery to overheat. Firstly, a thermal runaway (TR) model of the battery is built, and the simulation results are compared with the experimental results to verify the accuracy. Subsequently, a bottom heating module is added to the TR model to simulate and analyze. Results show, when the heat flux exceeds 1500 J (m<sup>2</sup> s)<sup>−1</sup> and heating continuously for over 26,787 s, TR is triggered. As the heat flux increases, the TR is triggered nearly half the time earlier, and the maximum temperature reached also increases by 7.62°C. Additionally, the ambient temperature has a great effect on the time of continuous heating to TR at low temperature, and has little effect on the maximum temperature. This work provides a reference for the model study of TR in the case of low temperature heating.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 6","pages":"3927 - 3947"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01609-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the wide application of electric vehicles (EVs) in cold areas, low temperature heating of battery is becoming more and more mature, and the way of battery bottom heating is also widely used in EVs. Nevertheless, the battery is not completely safe during the heating process, and there may be a risk that the heating plate trigger the battery to overheat. Firstly, a thermal runaway (TR) model of the battery is built, and the simulation results are compared with the experimental results to verify the accuracy. Subsequently, a bottom heating module is added to the TR model to simulate and analyze. Results show, when the heat flux exceeds 1500 J (m2 s)−1 and heating continuously for over 26,787 s, TR is triggered. As the heat flux increases, the TR is triggered nearly half the time earlier, and the maximum temperature reached also increases by 7.62°C. Additionally, the ambient temperature has a great effect on the time of continuous heating to TR at low temperature, and has little effect on the maximum temperature. This work provides a reference for the model study of TR in the case of low temperature heating.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.