{"title":"Woa-fism planning hexapod robot various gaits","authors":"Pingzhi Hu, Mengjian Zhang, Deguang Wang","doi":"10.1007/s11370-024-00548-z","DOIUrl":null,"url":null,"abstract":"<p>Compared to wheeled and tracked robots, hexapod robots have higher adaptability and higher flexibility in complex terrains. With various gaits, hexapod robots can fulfill different needs better. Existing researches mainly focused on three common gaits, they are single-leg swing gait, wave gait, and tripod gait. Instead of directly planning gaits with swarm intelligence algorithms (SIA), a gait planning method for hexapod robots named finite incremental state machine (FISM) is proposed. FISM focuses on four incremental states between two adjacent gaits of the robot, which greatly reduces the complexity of the gait planning algorithm so that gait planning with SIA is simplified to set the optimal transfer conditions of FISM. In addition, after comparing five optimization algorithms, the whale optimization algorithm (WOA) can set the optimal transfer conditions of FISM. The computer simulation shows WOA-FISM can plan various gaits, finally, a real robot test verifies the effectiveness of various gaits.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00548-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to wheeled and tracked robots, hexapod robots have higher adaptability and higher flexibility in complex terrains. With various gaits, hexapod robots can fulfill different needs better. Existing researches mainly focused on three common gaits, they are single-leg swing gait, wave gait, and tripod gait. Instead of directly planning gaits with swarm intelligence algorithms (SIA), a gait planning method for hexapod robots named finite incremental state machine (FISM) is proposed. FISM focuses on four incremental states between two adjacent gaits of the robot, which greatly reduces the complexity of the gait planning algorithm so that gait planning with SIA is simplified to set the optimal transfer conditions of FISM. In addition, after comparing five optimization algorithms, the whale optimization algorithm (WOA) can set the optimal transfer conditions of FISM. The computer simulation shows WOA-FISM can plan various gaits, finally, a real robot test verifies the effectiveness of various gaits.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).