Hybrid X-Linker: Automated Data Generation and Extreme Multi-label Ranking for Biomedical Entity Linking

Pedro Ruas, Fernando Gallego, Francisco J. Veredas, Francisco M. Couto
{"title":"Hybrid X-Linker: Automated Data Generation and Extreme Multi-label Ranking for Biomedical Entity Linking","authors":"Pedro Ruas, Fernando Gallego, Francisco J. Veredas, Francisco M. Couto","doi":"arxiv-2407.06292","DOIUrl":null,"url":null,"abstract":"State-of-the-art deep learning entity linking methods rely on extensive\nhuman-labelled data, which is costly to acquire. Current datasets are limited\nin size, leading to inadequate coverage of biomedical concepts and diminished\nperformance when applied to new data. In this work, we propose to automatically\ngenerate data to create large-scale training datasets, which allows the\nexploration of approaches originally developed for the task of extreme\nmulti-label ranking in the biomedical entity linking task. We propose the\nhybrid X-Linker pipeline that includes different modules to link disease and\nchemical entity mentions to concepts in the MEDIC and the CTD-Chemical\nvocabularies, respectively. X-Linker was evaluated on several biomedical\ndatasets: BC5CDR-Disease, BioRED-Disease, NCBI-Disease, BC5CDR-Chemical,\nBioRED-Chemical, and NLM-Chem, achieving top-1 accuracies of 0.8307, 0.7969,\n0.8271, 0.9511, 0.9248, and 0.7895, respectively. X-Linker demonstrated\nsuperior performance in three datasets: BC5CDR-Disease, NCBI-Disease, and\nBioRED-Chemical. In contrast, SapBERT outperformed X-Linker in the remaining\nthree datasets. Both models rely only on the mention string for their\noperations. The source code of X-Linker and its associated data are publicly\navailable for performing biomedical entity linking without requiring\npre-labelled entities with identifiers from specific knowledge organization\nsystems.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art deep learning entity linking methods rely on extensive human-labelled data, which is costly to acquire. Current datasets are limited in size, leading to inadequate coverage of biomedical concepts and diminished performance when applied to new data. In this work, we propose to automatically generate data to create large-scale training datasets, which allows the exploration of approaches originally developed for the task of extreme multi-label ranking in the biomedical entity linking task. We propose the hybrid X-Linker pipeline that includes different modules to link disease and chemical entity mentions to concepts in the MEDIC and the CTD-Chemical vocabularies, respectively. X-Linker was evaluated on several biomedical datasets: BC5CDR-Disease, BioRED-Disease, NCBI-Disease, BC5CDR-Chemical, BioRED-Chemical, and NLM-Chem, achieving top-1 accuracies of 0.8307, 0.7969, 0.8271, 0.9511, 0.9248, and 0.7895, respectively. X-Linker demonstrated superior performance in three datasets: BC5CDR-Disease, NCBI-Disease, and BioRED-Chemical. In contrast, SapBERT outperformed X-Linker in the remaining three datasets. Both models rely only on the mention string for their operations. The source code of X-Linker and its associated data are publicly available for performing biomedical entity linking without requiring pre-labelled entities with identifiers from specific knowledge organization systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合 X-链接器:用于生物医学实体链接的自动数据生成和极端多标签排序
最先进的深度学习实体链接方法依赖于大量人类标记数据,而获取这些数据的成本很高。目前的数据集规模有限,导致对生物医学概念的覆盖不足,在应用于新数据时性能下降。在这项工作中,我们建议自动生成数据以创建大规模训练数据集,这样就可以探索最初为生物医学实体链接任务中的极端多标签排序任务而开发的方法。我们提出的混合 X-Linker 管道包括不同的模块,用于将疾病和化学实体提及分别链接到 MEDIC 和 CTD-Chemicalocabularies 中的概念。X-Linker 在几个生物医学数据集上进行了评估:X-Linker 在几个生物医学数据集上进行了评估:BC5CDR-Disease、BioRED-Disease、NCBI-Disease、BC5CDR-Chemical、BioRED-Chemical 和 NLM-Chem,前 1 位的准确率分别为 0.8307、0.7969、0.8271、0.9511、0.9248 和 0.7895。X-Linker 在三个数据集中表现出更高的性能:在 BC5CDR-疾病、NCBI-疾病和 BioRED-Chemical 三个数据集中,X-Linker 表现出更高的性能。相比之下,SapBERT 在其余三个数据集中的表现优于 X-Linker。这两个模型的运算都只依赖于提及字符串。X-Linker 的源代码及其相关数据是公开的,可用于执行生物医学实体链接,而不需要从特定的知识组织系统中预先标记具有标识符的实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1