J. Chen, D.L. Brower, J. McClenaghan, Z. Yan, A.E. Hubbard, R. Groebner
{"title":"Turbulence link to L-mode, I-mode, and H-mode confinement in the DIII-D tokamak","authors":"J. Chen, D.L. Brower, J. McClenaghan, Z. Yan, A.E. Hubbard, R. Groebner","doi":"10.1088/1741-4326/ad5aae","DOIUrl":null,"url":null,"abstract":"Understanding the physics of low-confinement (L-), improved-confinement (I-), and high-confinement (H-) modes is critical for fusion reactors. The finding herein reports observations of two types of turbulence coexisting near the L-mode edge, one magnetohydrodynamic (MHD)-like and another micro-tearing mode (MTM)-like, linked to the H-mode and I-mode confinement in the DIII-D tokamak. Ion-scale magnetic and density turbulence is measured using a Faraday-effect radial-interferometer-polarimeter and beam-emission-spectroscopy (BES). Broadband turbulence spectra of up to ∼600 kHz are observed in two discharges where transitions between L-mode, I-mode, and H-mode occurs. Turbulence is found to be inversely correlated with confinement, meaning lower turbulence power at higher confinement. Distinctively, the high-frequency (HF, >∼100 kHz) magnetic turbulence power changes by the most (55%) during transitions primarily involving energy confinement change, whereas the low-frequency (LF, <∼100 kHz) magnetic and density turbulence power changes by the most (80%) during transitions primarily involving particle confinement change. The LF turbulence amplitude oscillates with and leads to deuterium-alpha emission oscillations before an H-mode. These results imply that HF turbulence mainly affects energy confinement whereas LF turbulence can affect particle confinement. The magnetic and density turbulence exhibits coherence up to 0.6 and cross-phase magnitude close to <inline-formula>\n<tex-math><?CDATA $\\pi /2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>π</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"nfad5aaeieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> in most cases, suggesting they have a common origin in both the LF and HF ranges. BES suggests that LF turbulence resides at the edge (<inline-formula>\n<tex-math><?CDATA $\\rho = 0.95$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.95</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"nfad5aaeieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) and HF turbulence can be at the outer core (<inline-formula>\n<tex-math><?CDATA $\\rho = 0.8$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.8</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"nfad5aaeieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) or edge (<inline-formula>\n<tex-math><?CDATA $\\rho = 0.95$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:mn>0.95</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"nfad5aaeieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>). Comparisons of measurements, theory, and gyrokinetic simulations suggest that HF turbulence is MTM-like in all cases, whereas LF turbulence is more consistent with MHD-like modes and the exact instability might change during transitions—except that a drift-wave origin is possible in a low collisionality H-mode. These results suggest that the H-mode involves suppressed MHD-like turbulence, whereas the I-mode mitigates MTM-like turbulence along with largely unchanged MHD-like turbulence.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"61 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad5aae","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the physics of low-confinement (L-), improved-confinement (I-), and high-confinement (H-) modes is critical for fusion reactors. The finding herein reports observations of two types of turbulence coexisting near the L-mode edge, one magnetohydrodynamic (MHD)-like and another micro-tearing mode (MTM)-like, linked to the H-mode and I-mode confinement in the DIII-D tokamak. Ion-scale magnetic and density turbulence is measured using a Faraday-effect radial-interferometer-polarimeter and beam-emission-spectroscopy (BES). Broadband turbulence spectra of up to ∼600 kHz are observed in two discharges where transitions between L-mode, I-mode, and H-mode occurs. Turbulence is found to be inversely correlated with confinement, meaning lower turbulence power at higher confinement. Distinctively, the high-frequency (HF, >∼100 kHz) magnetic turbulence power changes by the most (55%) during transitions primarily involving energy confinement change, whereas the low-frequency (LF, <∼100 kHz) magnetic and density turbulence power changes by the most (80%) during transitions primarily involving particle confinement change. The LF turbulence amplitude oscillates with and leads to deuterium-alpha emission oscillations before an H-mode. These results imply that HF turbulence mainly affects energy confinement whereas LF turbulence can affect particle confinement. The magnetic and density turbulence exhibits coherence up to 0.6 and cross-phase magnitude close to π/2 in most cases, suggesting they have a common origin in both the LF and HF ranges. BES suggests that LF turbulence resides at the edge (ρ=0.95) and HF turbulence can be at the outer core (ρ=0.8) or edge (ρ=0.95). Comparisons of measurements, theory, and gyrokinetic simulations suggest that HF turbulence is MTM-like in all cases, whereas LF turbulence is more consistent with MHD-like modes and the exact instability might change during transitions—except that a drift-wave origin is possible in a low collisionality H-mode. These results suggest that the H-mode involves suppressed MHD-like turbulence, whereas the I-mode mitigates MTM-like turbulence along with largely unchanged MHD-like turbulence.
了解低约束(L-)、改进约束(I-)和高约束(H-)模式的物理特性对聚变反应堆至关重要。本文的发现报告了对 L 模式边缘附近共存的两种湍流的观测,一种类似于磁流体动力(MHD),另一种类似于微撕裂模式(MTM),与 DIII-D 托卡马克中的 H 模式和 I 模式约束有关。离子尺度的磁湍流和密度湍流是利用法拉第效应径向干涉仪-偏振仪和光束发射光谱仪(BES)测量的。在两个发生 L 模式、I 模式和 H 模式转换的放电中观测到了高达 ∼600 kHz 的宽带湍流频谱。发现湍流与约束成反比,即约束越高,湍流功率越低。不同的是,高频(HF,>∼100 kHz)磁湍流功率在主要涉及能量束缚变化的过渡期间变化最大(55%),而低频(LF,<∼100 kHz)磁湍流和密度湍流功率在主要涉及粒子束缚变化的过渡期间变化最大(80%)。低频湍流振幅与 H 模式之前的氘-α 辐射振荡同步,并导致 H 模式之前的氘-α 辐射振荡。这些结果表明,高频湍流主要影响能量约束,而低频湍流会影响粒子约束。在大多数情况下,磁湍流和密度湍流表现出高达 0.6 的相干性和接近 π/2 的跨相幅度,这表明它们在低频和高频范围内具有共同的起源。BES 表明低频湍流位于边缘(ρ=0.95),而高频湍流可能位于外核(ρ=0.8)或边缘(ρ=0.95)。对测量结果、理论和陀螺动力学模拟的比较表明,高频湍流在所有情况下都类似于 MTM,而低频湍流则更符合类似于 MHD 的模式,而且在转换过程中,确切的不稳定性可能会发生变化--除了在低碰撞度的 H 模式中可能存在漂移波起源。这些结果表明,H 模式涉及被抑制的 MHD 类湍流,而 I 模式则减轻了 MTM 类湍流以及基本不变的 MHD 类湍流。
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.