Seeing nanoscale electrocatalytic reactions at individual MoS2 particles under an optical microscope: probing sub-mM oxygen reduction reaction

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-07-10 DOI:10.1039/d4fd00132j
Nikan Afsahi, Zhu Zhang, Sanli Faez, Jean-Marc Noël, Manas Ranjan Panda, Mainak Majumder, Naimeh Naseritaheri, Jean-François Lemineur, Frederic Kanoufi
{"title":"Seeing nanoscale electrocatalytic reactions at individual MoS2 particles under an optical microscope: probing sub-mM oxygen reduction reaction","authors":"Nikan Afsahi, Zhu Zhang, Sanli Faez, Jean-Marc Noël, Manas Ranjan Panda, Mainak Majumder, Naimeh Naseritaheri, Jean-François Lemineur, Frederic Kanoufi","doi":"10.1039/d4fd00132j","DOIUrl":null,"url":null,"abstract":"MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthetize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00132j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthetize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在光学显微镜下观察单个 MoS2 颗粒的纳米级电催化反应:探测亚毫微米级的氧还原反应
MoS2 是一种很有前途的电催化材料,可替代贵金属。纳米电化学研究(如使用纳米电化学电池约束)尤其有助于证明 MoS2 边缘的优先电催化活性。随着这些发现的出现,合成边缘丰富的纳米材料的研究工作也随之展开。然而,要在单颗粒水平上充分了解它们的电催化性能,还需要开发新的仪器。在此,我们介绍一种高灵敏度折射率光学显微镜技术,即干涉散射显微镜(iSCAT),用于监测单个 MoS2 花瓣状亚微粒的局部电化学。这项工作的重点是氧还原反应(ORR),该反应在低电流密度下进行,因此需要高灵敏度的成像技术。通过采用沉淀反应来揭示 ORR 活性,并利用 iSCAT 的高空间分辨率和对比度,我们实现了评估单个 MoS2 粒子 ORR 活性所需的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Restoring translational symmetry in periodic all-orbital dynamical mean-field theory simulations. A Micropore Nanoband Electrode Array for Enhanced Electrochemical Generation/Analysis in Flow Systems Tiled unitary product states for strongly correlated Hamiltonians. Ion Current Oscillation with Polyelectrolyte Modified Micropipettes Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1