Regret optimal control for uncertain stochastic systems

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS European Journal of Control Pub Date : 2024-11-01 DOI:10.1016/j.ejcon.2024.101051
Andrea Martin , Luca Furieri , Florian Dörfler , John Lygeros , Giancarlo Ferrari-Trecate
{"title":"Regret optimal control for uncertain stochastic systems","authors":"Andrea Martin ,&nbsp;Luca Furieri ,&nbsp;Florian Dörfler ,&nbsp;John Lygeros ,&nbsp;Giancarlo Ferrari-Trecate","doi":"10.1016/j.ejcon.2024.101051","DOIUrl":null,"url":null,"abstract":"<div><div>We consider control of uncertain linear time-varying stochastic systems from the perspective of regret minimization. Specifically, we focus on the problem of designing a feedback controller that minimizes the loss relative to a clairvoyant optimal policy that has foreknowledge of both the system dynamics and the exogenous disturbances. In this competitive framework, establishing robustness guarantees proves challenging as, differently from the case where the model is known, the clairvoyant optimal policy is not only inapplicable, but also impossible to compute without knowledge of the system parameters. To address this challenge, we embrace a scenario optimization approach, and we propose minimizing regret robustly over a finite set of randomly sampled system parameters. We prove that this policy optimization problem can be solved through semidefinite programming, and that the corresponding solution retains strong probabilistic out-of-sample regret guarantees in face of the uncertain dynamics. Our method naturally extends to include satisfaction of safety constraints with high probability. We validate our theoretical results and showcase the potential of our approach by means of numerical simulations.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101051"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider control of uncertain linear time-varying stochastic systems from the perspective of regret minimization. Specifically, we focus on the problem of designing a feedback controller that minimizes the loss relative to a clairvoyant optimal policy that has foreknowledge of both the system dynamics and the exogenous disturbances. In this competitive framework, establishing robustness guarantees proves challenging as, differently from the case where the model is known, the clairvoyant optimal policy is not only inapplicable, but also impossible to compute without knowledge of the system parameters. To address this challenge, we embrace a scenario optimization approach, and we propose minimizing regret robustly over a finite set of randomly sampled system parameters. We prove that this policy optimization problem can be solved through semidefinite programming, and that the corresponding solution retains strong probabilistic out-of-sample regret guarantees in face of the uncertain dynamics. Our method naturally extends to include satisfaction of safety constraints with high probability. We validate our theoretical results and showcase the potential of our approach by means of numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定随机系统的遗憾优化控制
我们从遗憾最小化的角度来考虑不确定线性时变随机系统的控制问题。具体来说,我们关注的问题是设计一个反馈控制器,使其相对于预知系统动态和外生扰动的 "千里眼 "最优策略的损失最小。在这一竞争框架中,建立鲁棒性保证具有挑战性,因为与已知模型的情况不同,千里眼最优策略不仅不适用,而且在不知道系统参数的情况下也无法计算。为了应对这一挑战,我们采用了一种情景优化方法,并建议在随机取样的有限系统参数集上稳健地最小化遗憾。我们证明,这个策略优化问题可以通过半定量编程来解决,而且面对不确定的动态,相应的解决方案仍能保持较强的概率样本外遗憾保证。我们的方法可自然扩展到高概率安全约束的满足。我们通过数值模拟验证了我们的理论结果,并展示了我们方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
期刊最新文献
Editorial Board Data-driven event-triggering mechanism for linear systems subject to input saturation Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning Communication-aware formation control for networks of AUVs Scaled graphs for reset control system analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1