CuInS2/Red Phosphorus Nanosheet Interleaved Heterostructures with Improved Interfacial Charge Transfer for Photoelectrochemical Aptasensing.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-07-23 Epub Date: 2024-07-11 DOI:10.1021/acs.analchem.4c01917
Yunpeng Li, Guliqire Adili, Gang Liang, Yuhua Ma, Jianbo Liu
{"title":"CuInS<sub>2</sub>/Red Phosphorus Nanosheet Interleaved Heterostructures with Improved Interfacial Charge Transfer for Photoelectrochemical Aptasensing.","authors":"Yunpeng Li, Guliqire Adili, Gang Liang, Yuhua Ma, Jianbo Liu","doi":"10.1021/acs.analchem.4c01917","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerating the migration of interfacial carriers in heterojunctions is crucial for achieving highly sensitive photoelectrochemical (PEC) sensing. In this study, we developed three-dimensional (3D)/two-dimensional (2D) CuInS<sub>2</sub>/red phosphorus nanosheet (CuInS<sub>2</sub>/RP NS) n-n heterojunction functional materials with enhanced interfacial charge transfer capabilities for PEC sensing. The 3D CuInS<sub>2</sub> serves as a conductive layer, providing excellent electronic conductivity and superior electron absorption and transport properties. In contrast, the ultrathin RP NS acts as a transport layer that enhances carrier mobility. The 3D/2D heterojunction ensures a large interface contact surface, shortening the carrier transport distance. A well-aligned band position generates a substantial built-in electric field, providing a significant driving force for efficient carrier separation and migration, thereby improving response sensitivity. A PEC aptamer sensor was constructed based on the synthesized heterostructure for ciprofloxacin detection. The detection limit of the CuInS<sub>2</sub>/RP NS aptamer sensor for ciprofloxacin is 2.03 × 10<sup>-15</sup> mg·mL<sup>-1</sup>, with a linear range from 1.0 × 10<sup>-14</sup> to 1.0 × 10<sup>-5</sup> mg·mL<sup>-1</sup>. This work presents a strategy for enhancing the photoelectric response by modulating the interface structure of heterojunctions, thereby opening new prospects for the application of highly sensitive PEC sensors in antibiotic detection.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c01917","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerating the migration of interfacial carriers in heterojunctions is crucial for achieving highly sensitive photoelectrochemical (PEC) sensing. In this study, we developed three-dimensional (3D)/two-dimensional (2D) CuInS2/red phosphorus nanosheet (CuInS2/RP NS) n-n heterojunction functional materials with enhanced interfacial charge transfer capabilities for PEC sensing. The 3D CuInS2 serves as a conductive layer, providing excellent electronic conductivity and superior electron absorption and transport properties. In contrast, the ultrathin RP NS acts as a transport layer that enhances carrier mobility. The 3D/2D heterojunction ensures a large interface contact surface, shortening the carrier transport distance. A well-aligned band position generates a substantial built-in electric field, providing a significant driving force for efficient carrier separation and migration, thereby improving response sensitivity. A PEC aptamer sensor was constructed based on the synthesized heterostructure for ciprofloxacin detection. The detection limit of the CuInS2/RP NS aptamer sensor for ciprofloxacin is 2.03 × 10-15 mg·mL-1, with a linear range from 1.0 × 10-14 to 1.0 × 10-5 mg·mL-1. This work presents a strategy for enhancing the photoelectric response by modulating the interface structure of heterojunctions, thereby opening new prospects for the application of highly sensitive PEC sensors in antibiotic detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光电化学光感测的 CuInS2/Red Phosphorus Nanosheet 交错异质结构可改善界面电荷转移。
加速异质结中界面载流子的迁移是实现高灵敏度光电化学(PEC)传感的关键。在这项研究中,我们开发了三维(3D)/二维(2D)CuInS2/红磷纳米片(CuInS2/RP NS)n-n 异质结功能材料,这些材料具有增强的界面电荷转移能力,可用于 PEC 传感。三维 CuInS2 可作为导电层,提供出色的电子导电性以及卓越的电子吸收和传输特性。相比之下,超薄 RP NS 可作为传输层,提高载流子迁移率。三维/二维异质结确保了较大的界面接触面,缩短了载流子传输距离。排列整齐的带位可产生大量内置电场,为有效的载流子分离和迁移提供强大的驱动力,从而提高响应灵敏度。基于合成的异质结构,我们构建了一种用于检测环丙沙星的 PEC 合酶传感器。CuInS2/RP NS 合体传感器对环丙沙星的检测限为 2.03 × 10-15 mg-mL-1,线性范围为 1.0 × 10-14 至 1.0 × 10-5 mg-mL-1。这项工作提出了一种通过调节异质结的界面结构来增强光电响应的策略,从而为高灵敏度 PEC 传感器在抗生素检测中的应用开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Exonuclease III/Cas12a Cascade Amplification Strategy and Smartphone-Based Portable Fluorescence Detector to Repurpose the Commercial AFP Strip for the POCT of Multiple RNAs. High-Throughput Metabolomics using 96-plex Isotope Tagging. Microchip Liquid-Phase Ion Trap for Online Mass Spectrometry Analysis. Mini-Program Enabled IoT Intelligent Molecular Diagnostic Device for Co-Detection and Spatiotemporal Mapping of Infectious Disease Pathogens. Rock-to-Pharma: Characterization of Shale Oil-Based Nonbiological Complex Drugs along the Production Process by High-Resolution Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1