Direct Determination of Torsion in Twisted Graphite and MoS2 Interfaces.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-24 Epub Date: 2024-07-11 DOI:10.1021/acs.nanolett.4c01944
Gautham Vijayan, Elad Koren
{"title":"Direct Determination of Torsion in Twisted Graphite and MoS<sub>2</sub> Interfaces.","authors":"Gautham Vijayan, Elad Koren","doi":"10.1021/acs.nanolett.4c01944","DOIUrl":null,"url":null,"abstract":"<p><p>The design space of two-dimensional materials is undergoing significant expansion through the stacking of layers in non-equilibrium configurations. However, the lack of quantitative insights into twist dynamics impedes the development of such heterostructures. Herein, we utilize the lateral force sensitivity of an atomic force microscope cantilever and specially designed rotational bearing structures to measure the torque in graphite and MoS<sub>2</sub> interfaces. While the extracted torsional energies are virtually zero across all angular misfit configurations, commensurate interfaces of graphite and MoS<sub>2</sub> are characterized by values of 0.1533 and 0.6384 N-m/m<sup>2</sup>, respectively. Furthermore, we measured the adhesion energies of graphite and MoS<sub>2</sub> to elucidate the interplay between twist and slide. The adhesion energy dominates over the torsional energy for the graphitic interface, suggesting a tendency to twist prior to superlubric sliding. Conversely, MoS<sub>2</sub> displays an increased torsional energy exceeding its adhesion energy. Consequently, our findings demonstrate a fundamental disparity between the sliding-to-twisting dynamics at MoS<sub>2</sub> and graphite interfaces.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design space of two-dimensional materials is undergoing significant expansion through the stacking of layers in non-equilibrium configurations. However, the lack of quantitative insights into twist dynamics impedes the development of such heterostructures. Herein, we utilize the lateral force sensitivity of an atomic force microscope cantilever and specially designed rotational bearing structures to measure the torque in graphite and MoS2 interfaces. While the extracted torsional energies are virtually zero across all angular misfit configurations, commensurate interfaces of graphite and MoS2 are characterized by values of 0.1533 and 0.6384 N-m/m2, respectively. Furthermore, we measured the adhesion energies of graphite and MoS2 to elucidate the interplay between twist and slide. The adhesion energy dominates over the torsional energy for the graphitic interface, suggesting a tendency to twist prior to superlubric sliding. Conversely, MoS2 displays an increased torsional energy exceeding its adhesion energy. Consequently, our findings demonstrate a fundamental disparity between the sliding-to-twisting dynamics at MoS2 and graphite interfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接测定扭曲石墨和 MoS2 界面的扭转。
通过在非平衡配置中堆叠层,二维材料的设计空间正在显著扩大。然而,由于缺乏对扭转动力学的定量了解,阻碍了此类异质结构的发展。在此,我们利用原子力显微镜悬臂的横向力灵敏度和专门设计的旋转轴承结构来测量石墨和 MoS2 接口的扭转。虽然在所有角度错配配置中提取的扭转能几乎为零,但石墨和 MoS2 相称界面的扭转能值分别为 0.1533 和 0.6384 N-m/m2。此外,我们还测量了石墨和 MoS2 的附着能,以阐明扭曲与滑动之间的相互作用。石墨界面的粘附能高于扭转能,这表明在超润滑滑动之前存在扭转趋势。相反,MoS2 显示出的扭转能的增加超过了其粘附能。因此,我们的研究结果表明,MoS2 和石墨界面的滑动到扭转动力学之间存在根本差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH4 and C2+ Product Selectivity in CO2 Electroreduction. Full-Dimensional Geometric-Phase Spatial Light Metamodulation. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO2 Electro-conversion to Multicarbon Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1