Magnetic Structure-Dependent Ultrafast Spin Relaxation in Magnet CrI3: A Time-Domain ab Initio Study.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-24 Epub Date: 2024-07-11 DOI:10.1021/acs.nanolett.4c01809
Haoran Lu, Run Long
{"title":"Magnetic Structure-Dependent Ultrafast Spin Relaxation in Magnet CrI<sub>3</sub>: A Time-Domain ab Initio Study.","authors":"Haoran Lu, Run Long","doi":"10.1021/acs.nanolett.4c01809","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional magnet CrI<sub>3</sub> is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI<sub>3</sub> and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI<sub>3</sub> with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI<sub>3</sub> shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI<sub>3</sub> underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01809","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性 CrI3 中与磁结构有关的超快自旋弛豫:时域 ab Initio 研究。
二维磁体 CrI3 是自旋电子器件的理想候选材料。利用非绝热分子动力学和非共线自旋时变密度泛函理论,我们研究了二维 CrI3 中的空穴自旋弛豫及其对磁性配置的依赖性,以及自旋轨道和电子-声子相互作用的影响。在面内和面外碘运动的驱动下,弛豫速率各不相同,从铁磁系统中的半皮秒到某些反铁磁态中的几十飞秒不等,这是由于与非绝热自旋翻转调谐到绝热翻转相关的显著自旋波动造成的。具有交错层磁序的反铁磁性 CrI3 由于增强了状态退变性和额外的声子模式,显著加速了绝热自旋翻转。随着磁矩的变化,铁磁性 CrI3 显示出铁磁和反铁磁类型之间的过渡行为。这些对 CrI3 自旋动力学的深入研究凸显了它在快速响应自旋电子学应用方面的潜力,并推进了我们对自旋电子学二维材料的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. Tuning CuMgAl-Layered Double Hydroxide Nanostructures to Achieve CH4 and C2+ Product Selectivity in CO2 Electroreduction. Full-Dimensional Geometric-Phase Spatial Light Metamodulation. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO2 Electro-conversion to Multicarbon Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1