Rational design of dual-ion doped cobalt-free Li-rich cathode materials for enhanced cycle stability of lithium-ion pouch cell batteries.

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-07-11 DOI:10.1039/d4nr01489h
Otavio Augusto Titton Dias, Farnaz Azarnia, Keerti Rathi, Viktoriya Pakharenko, Vijay K Tomer, Mohini Sain
{"title":"Rational design of dual-ion doped cobalt-free Li-rich cathode materials for enhanced cycle stability of lithium-ion pouch cell batteries.","authors":"Otavio Augusto Titton Dias, Farnaz Azarnia, Keerti Rathi, Viktoriya Pakharenko, Vijay K Tomer, Mohini Sain","doi":"10.1039/d4nr01489h","DOIUrl":null,"url":null,"abstract":"<p><p>The synergistic effect of single-crystal structure and dual doping in Li-rich cobalt-free cathode materials was thoroughly investigated. Lithium-ion pouch cells employing Sb/Sn doped Li<sub>1.2</sub>Mn<sub>0.6</sub>Ni<sub>0.2</sub>O<sub>2</sub> and graphite exhibited a specific capacity of 191.01 mA h g<sup>-1</sup> at 1C rate and exceptionally stable performance upon cycling, with capacity retention of 87.24% of their initial capacity after 250 cycles at 1C rate. The strategic combination of morphology manipulation and dual ion doping has markedly diminished cation mixing and expanded the Li interstitial sites within the cathode lattice. This work offers significant insights into the mechanisms responsible for the structural decline of Li-rich cobalt-free cathodes, emphasizing the importance of stabilizing the cathode lattice structure at high potential. These findings suggest promising potential for this material to meet the demanding energy density criteria for electric vehicles. Finally, this research provides practical strategies for effectively implementing high-voltage cobalt-free cathodes, offering valuable guidance for future applications.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr01489h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effect of single-crystal structure and dual doping in Li-rich cobalt-free cathode materials was thoroughly investigated. Lithium-ion pouch cells employing Sb/Sn doped Li1.2Mn0.6Ni0.2O2 and graphite exhibited a specific capacity of 191.01 mA h g-1 at 1C rate and exceptionally stable performance upon cycling, with capacity retention of 87.24% of their initial capacity after 250 cycles at 1C rate. The strategic combination of morphology manipulation and dual ion doping has markedly diminished cation mixing and expanded the Li interstitial sites within the cathode lattice. This work offers significant insights into the mechanisms responsible for the structural decline of Li-rich cobalt-free cathodes, emphasizing the importance of stabilizing the cathode lattice structure at high potential. These findings suggest promising potential for this material to meet the demanding energy density criteria for electric vehicles. Finally, this research provides practical strategies for effectively implementing high-voltage cobalt-free cathodes, offering valuable guidance for future applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合理设计双离子掺杂无钴富锂正极材料,提高锂离子袋式电池的循环稳定性。
深入研究了单晶结构和双重掺杂在富锂无钴正极材料中的协同效应。采用掺杂了 Sb/Sn 的 Li1.2Mn0.6Ni0.2O2 和石墨的锂离子袋式电池在 1C 速率下的比容量为 191.01 mA h g-1,循环性能异常稳定,在 1C 速率下循环 250 次后,容量保持率为初始容量的 87.24%。形貌处理和双离子掺杂的策略性结合明显减少了阳离子混合,扩大了阴极晶格内的锂间隙位点。这项研究深入揭示了富锂离子无钴阴极结构衰退的机理,强调了在高电势下稳定阴极晶格结构的重要性。这些发现表明,这种材料在满足电动汽车高能量密度标准方面具有广阔的潜力。最后,这项研究为有效实施高压无钴阴极提供了实用的策略,为未来的应用提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
A supervised graph-based deep learning algorithm to detect and quantify clustered particles. Preparation of sp2 carbon-bonded π-conjugated COF aerogels by ultrasound-assisted mild solvothermal reaction for multi-functional applications. Restoring physiological parameters of the pancreas and kidney through treatment with a polymeric nano-formulation of C-peptide and lisofylline combination in diabetic nephropathy. Surface-anchored Carbon Nanomaterials for antimicrobial surfaces Design of terahertz metamaterial absorbers with switchable absorption functions utilizing thermal and electrical dual-modulation strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1