Yuyang Zhao , Jingying Yang , Qi Zhang , Xiangming Chen , Wenting Liang , Yanling Zheng , Jijun Huang , Yue Liao , Cheng Fu , Ting Huang , Xiaomin Li , Yu Zheng , Jin Bu , Erxia Shen
{"title":"Fasting alleviates bleomycin-induced lung inflammation and fibrosis via decreased Tregs and monocytes","authors":"Yuyang Zhao , Jingying Yang , Qi Zhang , Xiangming Chen , Wenting Liang , Yanling Zheng , Jijun Huang , Yue Liao , Cheng Fu , Ting Huang , Xiaomin Li , Yu Zheng , Jin Bu , Erxia Shen","doi":"10.1016/j.advms.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis.</p></div><div><h3>Methods</h3><p>Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry.</p></div><div><h3>Results</h3><p>IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of <em>Col 1a</em> and <em>Col 3a</em> in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues.</p></div><div><h3>Conclusions</h3><p>IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.</p></div>","PeriodicalId":7347,"journal":{"name":"Advances in medical sciences","volume":"69 2","pages":"Pages 303-311"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in medical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1896112624000385","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis.
Methods
Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry.
Results
IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of Col 1a and Col 3a in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues.
Conclusions
IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.
期刊介绍:
Advances in Medical Sciences is an international, peer-reviewed journal that welcomes original research articles and reviews on current advances in life sciences, preclinical and clinical medicine, and related disciplines.
The Journal’s primary aim is to make every effort to contribute to progress in medical sciences. The strive is to bridge laboratory and clinical settings with cutting edge research findings and new developments.
Advances in Medical Sciences publishes articles which bring novel insights into diagnostic and molecular imaging, offering essential prior knowledge for diagnosis and treatment indispensable in all areas of medical sciences. It also publishes articles on pathological sciences giving foundation knowledge on the overall study of human diseases. Through its publications Advances in Medical Sciences also stresses the importance of pharmaceutical sciences as a rapidly and ever expanding area of research on drug design, development, action and evaluation contributing significantly to a variety of scientific disciplines.
The journal welcomes submissions from the following disciplines:
General and internal medicine,
Cancer research,
Genetics,
Endocrinology,
Gastroenterology,
Cardiology and Cardiovascular Medicine,
Immunology and Allergy,
Pathology and Forensic Medicine,
Cell and molecular Biology,
Haematology,
Biochemistry,
Clinical and Experimental Pathology.