Enhancing neovascularization post-myocardial infarction through injectable hydrogel functionalized with endothelial-derived EVs.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-07-23 DOI:10.1088/1758-5090/ad6190
Fabio Maiullari, Marika Milan, Maila Chirivì, Maria Grazia Ceraolo, Salma Bousselmi, Nicole Fratini, Matteo Galbiati, Orazio Fortunato, Marco Costantini, Francesca Brambilla, Pierluigi Mauri, Dario Di Silvestre, Antonella Calogero, Tommaso Sciarra, Roberto Rizzi, Claudia Bearzi
{"title":"Enhancing neovascularization post-myocardial infarction through injectable hydrogel functionalized with endothelial-derived EVs.","authors":"Fabio Maiullari, Marika Milan, Maila Chirivì, Maria Grazia Ceraolo, Salma Bousselmi, Nicole Fratini, Matteo Galbiati, Orazio Fortunato, Marco Costantini, Francesca Brambilla, Pierluigi Mauri, Dario Di Silvestre, Antonella Calogero, Tommaso Sciarra, Roberto Rizzi, Claudia Bearzi","doi":"10.1088/1758-5090/ad6190","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad6190","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过注射内皮细胞衍生的 EVs 功能化水凝胶,增强心肌梗塞后的新生血管。
在过去的三十年里,细胞疗法的发展未能达到预期目标,许多细胞来源都出现了 "杰纳斯效应",并引发了安全问题。在先进技术的支持下,细胞外囊泡(EVs)为再生医学提供了一条前景广阔的途径,它具有免疫耐受和避免细胞移植相关负面影响等优点。我们之前的研究表明,在免疫缺陷动物模型中使用含有 HUVEC 衍生 EVs 的三维生物打印贴片,可以增强皮下血管的组织化。在这种情况下,原代细胞的应激条件进一步提高了 EVs 的新生血管生成潜力。由于血管新生是第一个需要修复的再生目标,本研究旨在通过在急性心肌梗死的病理条件下使用一种可注射的甲基丙烯酸明胶(GelMA)水凝胶,对我们之前的工作进行补充。这种生物活性水凝胶减少了纤维化,改善了收缩能力,促进了血管生成,在应对组织恶化和解决血管缺损方面显示出前景。此外,通过 miRNome 和蛋白质组分析对 EVs 进行分子鉴定,进一步证实了它们作为水凝胶功能化生物添加剂的潜力。这种无细胞方法可减轻免疫排斥和致癌风险,具有创新的治疗优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability. Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top-down digital light processing (DLP). Automated production of nerve repair constructs containing endothelial cell tube-like structures. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Nano-biofertilizers: utilizing nanopolymers as coating matrix - a comprehensive review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1