{"title":"SIRT6 suppresses colon cancer growth by inducing apoptosis and autophagy through transcriptionally down-regulating Survivin","authors":"","doi":"10.1016/j.mito.2024.101932","DOIUrl":null,"url":null,"abstract":"<div><p>SIRT6, an evolutionarily conserved histone deacetylase, has been identified as a novel direct downstream target of Akt/FoxO3a and a tumor suppressor in colon cancer in our previous research. Nevertheless, the precise mechanisms through which SIRT6 hinders tumor development remain unclear. To ascertain whether SIRT6 directly impacts Survivin transcription, a ChIP assay was conducted using an anti-SIRT6 antibody to isolate DNA. YM155 was synthesized to explore Survivin’s role in mitochondrial apoptosis, autophagy and tumor progression. Our investigation into the regulation of Survivin involved real-time fluorescence imaging in living cells, real-time PCR, immunohistochemistry, flow cytometry, and xenograft mouse assays. In this current study, we delved into the role of SIRT6 in colon cancer and established that activated SIRT6 triggers mitochondrial apoptosis by reducing Survivin expression. Subsequent examinations revealed that SIRT6 directly binds to the Survivin promoter, impeding its transcription. Notably, direct inhibition of Survivin significantly impeded colon cancer proliferation by inducing mitochondrial apoptosis and autophagy both <em>in vitro</em> and <em>in vivo</em>. More interestingly, Survivin inhibition reactivated the Akt/FoxO3a pathway and elevated SIRT6 levels, establishing a positive feedback loop. Our results identify Survivin as a novel downstream transcriptional target of SIRT6 that fosters tumor growth and holds promise as a prospective target for colon cancer therapy.</p></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"78 ","pages":"Article 101932"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724924000904","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SIRT6, an evolutionarily conserved histone deacetylase, has been identified as a novel direct downstream target of Akt/FoxO3a and a tumor suppressor in colon cancer in our previous research. Nevertheless, the precise mechanisms through which SIRT6 hinders tumor development remain unclear. To ascertain whether SIRT6 directly impacts Survivin transcription, a ChIP assay was conducted using an anti-SIRT6 antibody to isolate DNA. YM155 was synthesized to explore Survivin’s role in mitochondrial apoptosis, autophagy and tumor progression. Our investigation into the regulation of Survivin involved real-time fluorescence imaging in living cells, real-time PCR, immunohistochemistry, flow cytometry, and xenograft mouse assays. In this current study, we delved into the role of SIRT6 in colon cancer and established that activated SIRT6 triggers mitochondrial apoptosis by reducing Survivin expression. Subsequent examinations revealed that SIRT6 directly binds to the Survivin promoter, impeding its transcription. Notably, direct inhibition of Survivin significantly impeded colon cancer proliferation by inducing mitochondrial apoptosis and autophagy both in vitro and in vivo. More interestingly, Survivin inhibition reactivated the Akt/FoxO3a pathway and elevated SIRT6 levels, establishing a positive feedback loop. Our results identify Survivin as a novel downstream transcriptional target of SIRT6 that fosters tumor growth and holds promise as a prospective target for colon cancer therapy.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.