Alex R Bowers, Sailaja Manda, Sandhya Shekar, Alex D Hwang, Jae-Hyun Jung, Eli Peli
{"title":"Pilot study of a pedestrian collision detection test for a multisite trial of field expansion devices for hemianopia.","authors":"Alex R Bowers, Sailaja Manda, Sandhya Shekar, Alex D Hwang, Jae-Hyun Jung, Eli Peli","doi":"10.1097/OPX.0000000000002152","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Performance-based outcome measures are crucial for clinical trials of field expansion devices. We implemented a test simulating a real-world mobility situation, focusing on detection of a colliding pedestrian among multiple noncolliding pedestrians, suitable for measuring the effects of homonymous hemianopia and assistive devices in clinical trials.</p><p><strong>Purpose: </strong>In preparation for deploying the test in a multisite clinical trial, we conducted a pilot study to gather preliminary data on blind-side collision detection performance with multiperiscopic peripheral prisms compared with Fresnel peripheral prisms. We tested the hypothesis that detection rates for colliding pedestrians approaching on a 40° bearing angle (close to the highest collision risk when walking) would be higher with 100Δ oblique multiperiscopic (≈42° expansion) than 65Δ oblique Fresnel peripheral prisms (≈32° expansion).</p><p><strong>Methods: </strong>Six participants with homonymous hemianopia completed the test with and without each type of prism glasses, after using them in daily mobility for a minimum of 4 weeks. The test, presented as a video on a large screen, simulated walking through a busy shopping mall. Colliding pedestrians approached from the left or the right on a bearing angle of 20 or 40°.</p><p><strong>Results: </strong>Overall, blind-side detection was only 23% without prisms but improved to 73% with prisms. For multiperiscopic prisms, blind-side detection was significantly higher with than without prisms at 40° (88 vs. 0%) and 20° (75 vs. 0%). For Fresnel peripheral prisms, blind-side detection rates were not significantly higher with than without prisms at 40° (38 vs. 0%) but were significantly higher with prisms at 20° (94 vs. 56%). At 40°, detection rates were significantly higher with multiperiscopic than Fresnel prisms (88 vs. 38%).</p><p><strong>Conclusions: </strong>The collision detection test is suitable for evaluating the effects of hemianopia and prism glasses on collision detection, confirming its readiness to serve as the primary outcome measure in the upcoming clinical trial.</p>","PeriodicalId":19649,"journal":{"name":"Optometry and Vision Science","volume":"101 6","pages":"408-416"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optometry and Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/OPX.0000000000002152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Performance-based outcome measures are crucial for clinical trials of field expansion devices. We implemented a test simulating a real-world mobility situation, focusing on detection of a colliding pedestrian among multiple noncolliding pedestrians, suitable for measuring the effects of homonymous hemianopia and assistive devices in clinical trials.
Purpose: In preparation for deploying the test in a multisite clinical trial, we conducted a pilot study to gather preliminary data on blind-side collision detection performance with multiperiscopic peripheral prisms compared with Fresnel peripheral prisms. We tested the hypothesis that detection rates for colliding pedestrians approaching on a 40° bearing angle (close to the highest collision risk when walking) would be higher with 100Δ oblique multiperiscopic (≈42° expansion) than 65Δ oblique Fresnel peripheral prisms (≈32° expansion).
Methods: Six participants with homonymous hemianopia completed the test with and without each type of prism glasses, after using them in daily mobility for a minimum of 4 weeks. The test, presented as a video on a large screen, simulated walking through a busy shopping mall. Colliding pedestrians approached from the left or the right on a bearing angle of 20 or 40°.
Results: Overall, blind-side detection was only 23% without prisms but improved to 73% with prisms. For multiperiscopic prisms, blind-side detection was significantly higher with than without prisms at 40° (88 vs. 0%) and 20° (75 vs. 0%). For Fresnel peripheral prisms, blind-side detection rates were not significantly higher with than without prisms at 40° (38 vs. 0%) but were significantly higher with prisms at 20° (94 vs. 56%). At 40°, detection rates were significantly higher with multiperiscopic than Fresnel prisms (88 vs. 38%).
Conclusions: The collision detection test is suitable for evaluating the effects of hemianopia and prism glasses on collision detection, confirming its readiness to serve as the primary outcome measure in the upcoming clinical trial.
期刊介绍:
Optometry and Vision Science is the monthly peer-reviewed scientific publication of the American Academy of Optometry, publishing original research since 1924. Optometry and Vision Science is an internationally recognized source for education and information on current discoveries in optometry, physiological optics, vision science, and related fields. The journal considers original contributions that advance clinical practice, vision science, and public health. Authors should remember that the journal reaches readers worldwide and their submissions should be relevant and of interest to a broad audience. Topical priorities include, but are not limited to: clinical and laboratory research, evidence-based reviews, contact lenses, ocular growth and refractive error development, eye movements, visual function and perception, biology of the eye and ocular disease, epidemiology and public health, biomedical optics and instrumentation, novel and important clinical observations and treatments, and optometric education.