Garrett Elmore, Brooke M Ahern, Nicholas M McVay, Kyle W Barker, Sarisha S Lohano, Nemat Ali, Andrea Sebastian, Douglas A Andres, Jonathan Satin, Bryana M Levitan
{"title":"The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation.","authors":"Garrett Elmore, Brooke M Ahern, Nicholas M McVay, Kyle W Barker, Sarisha S Lohano, Nemat Ali, Andrea Sebastian, Douglas A Andres, Jonathan Satin, Bryana M Levitan","doi":"10.1085/jgp.202313518","DOIUrl":null,"url":null,"abstract":"<p><p>L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.
L 型 CaV1.2 电流(ICa,L)将心肌细胞的电兴奋与收缩联系在一起。ICa,L 受到严格调控,以控制心输出量。Rad 是一种与 Ras 相关的单体蛋白,可与 L 型钙通道 β 亚基(CaVβ)结合,促进对 ICa,L 的抑制。除了 Rad 核心基序赋予的 CaVβ 相互作用外,高度保守的 Rad C 端还能在体外引导膜结合,并在永生细胞系中抑制 ICa,L。在这项研究中,我们验证了一个假设,即在心肌细胞中,Rad 的多基态 C 端赋予了 t 管定位,而膜靶向是 Rad 依赖性 ICa,L 调节所必需的。我们在内源性小鼠 Rrad 基因的 N 端引入了 3xFlag 表位,以方便亚细胞定位分析。我们将全长 3xFlag-Rad (Flag-Rad)小鼠与第二种转基因小鼠模型进行了比较,在第二种转基因小鼠模型中,3xFlag-Rad 的延长多基 C 端被截断在丙氨酸 277(Flag-RadΔCT)处。分离出的心室心肌细胞用于抗 Flag-Rad 免疫细胞化学和体内外电生理学研究。全长 Flag-Rad 显示出重复的 t 管模式,而 Flag-RadΔCT 则未能显示出膜关联。Flag-RadΔCT心肌细胞中的ICa,L表现出激活中点超极化和最大电导增加。此外,Flag-RadΔCT 细胞的电流衰减更快。Rad C端缺失模型中的心肌ICa,L表征了ICa,L对β-AR刺激的调制反应。从机理上讲,多基 Rad C 端通过膜关联赋予 CaV1.2 调节功能。干扰 Rad 的膜结合是提高心脏功能的一个特定靶点,可用于治疗射血分数降低的心力衰竭。
期刊介绍:
General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization.
The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.