Deep motion estimation through adversarial learning for gait recognition

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-07-05 DOI:10.1016/j.patrec.2024.06.031
Yuanhao Yue , Laixiang Shi , Zheng Zheng , Long Chen , Zhongyuan Wang , Qin Zou
{"title":"Deep motion estimation through adversarial learning for gait recognition","authors":"Yuanhao Yue ,&nbsp;Laixiang Shi ,&nbsp;Zheng Zheng ,&nbsp;Long Chen ,&nbsp;Zhongyuan Wang ,&nbsp;Qin Zou","doi":"10.1016/j.patrec.2024.06.031","DOIUrl":null,"url":null,"abstract":"<div><p>Gait recognition is a form of identity verification that can be performed over long distances without requiring the subject’s cooperation, making it particularly valuable for applications such as access control, surveillance, and criminal investigation. The essence of gait lies in the motion dynamics of a walking individual. Accurate gait-motion estimation is crucial for high-performance gait recognition. In this paper, we introduce two main designs for gait motion estimation. Firstly, we propose a fully convolutional neural network named W-Net for silhouette segmentation from video sequences. Secondly, we present an adversarial learning-based algorithm for robust gait motion estimation. Together, these designs contribute to a high-performance system for gait recognition and user authentication. In the experiment, two datasets, i.e., OU-IRIS and our own dataset, are used for performance evaluation. Experimental results show that, the W-Net achieves an accuracy of 89.46% in silhouette segmentation, and the proposed user-authentication method achieves over 99.6% and 93.8% accuracy on the two datasets, respectively.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"184 ","pages":"Pages 232-237"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002010","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gait recognition is a form of identity verification that can be performed over long distances without requiring the subject’s cooperation, making it particularly valuable for applications such as access control, surveillance, and criminal investigation. The essence of gait lies in the motion dynamics of a walking individual. Accurate gait-motion estimation is crucial for high-performance gait recognition. In this paper, we introduce two main designs for gait motion estimation. Firstly, we propose a fully convolutional neural network named W-Net for silhouette segmentation from video sequences. Secondly, we present an adversarial learning-based algorithm for robust gait motion estimation. Together, these designs contribute to a high-performance system for gait recognition and user authentication. In the experiment, two datasets, i.e., OU-IRIS and our own dataset, are used for performance evaluation. Experimental results show that, the W-Net achieves an accuracy of 89.46% in silhouette segmentation, and the proposed user-authentication method achieves over 99.6% and 93.8% accuracy on the two datasets, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对抗学习进行深度运动估计,实现步态识别
步态识别是一种身份验证方式,可以在不需要被验者配合的情况下进行远距离识别,因此在门禁控制、监控和犯罪调查等应用中特别有价值。步态的本质在于步行者的运动动态。准确的步态运动估计对于高性能步态识别至关重要。本文介绍了步态运动估计的两种主要设计。首先,我们提出了一种名为 W-Net 的全卷积神经网络,用于从视频序列中分割剪影。其次,我们提出了一种基于对抗学习的鲁棒步态运动估计算法。这些设计共同为步态识别和用户身份验证的高性能系统做出了贡献。在实验中,我们使用了两个数据集(即 OU-IRIS 和我们自己的数据集)进行性能评估。实验结果表明,W-Net 的剪影分割准确率达到 89.46%,而所提出的用户身份验证方法在两个数据集上的准确率分别超过 99.6% 和 93.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Editorial Board Generalization performance distributions along learning curves Hierarchical memory-enhanced networks for student knowledge tracing Frequency-selective countnet: Enhancing text-guided object counting with frequency features PE-ViT: Parameter-efficient vision transformer with dimension-adaptive experts and economical attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1