{"title":"Mathematical modeling and seasonal solar radiation variability in Nigeria’s geo-political zones: A recurrence and multifractal analysis","authors":"A.O. Adelakun , F.M. Adelakun","doi":"10.1016/j.jastp.2024.106290","DOIUrl":null,"url":null,"abstract":"<div><p>This article delves into the seasonal variation of solar radiation patterns across Nigeria’s four geo-political zones, exploring their complex, scale-dependent behaviors. By employing chaotic quantifiers, the study characterizes irregular and self-similar patterns, enhancing our understanding of solar radiation variability and heterogeneity. The research uniquely fits meteorological parameters onto a global solar radiation model and focuses on the underexplored nonlinear aspects within tropical regions, specifically in the Nigerian context. Utilizing daily data from ERA INTERIM satellite archives for representative stations, the study employs nonlinear time series analysis methods like recurrence plots, recurrence qualitative analysis, and multifractal spectral analysis to comprehensively explore the unpredictable behaviors observed. The quantifier spectrums play a key role in revealing intricate scaling behaviors and correlation structures among environmental variables, shedding light on patterns often concealed by conventional statistical methods. For instance, we found that solar radiation variability in the northern region increases more significantly during the dry season compared to the wet season, unlike in the southern region. Additionally, the multifractal spectral analysis revealed a higher degree of complexity in solar radiation patterns during transition periods between seasons. The findings reveal a low recurrence quantitative analysis, long right tail, and truncations at both ends of the spectrum. This suggests instability in solar radiation across different seasons and locations. Nonetheless, the results also demonstrate that solar radiation is consistently available throughout the year, which is typical of tropical regions.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106290"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001184","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article delves into the seasonal variation of solar radiation patterns across Nigeria’s four geo-political zones, exploring their complex, scale-dependent behaviors. By employing chaotic quantifiers, the study characterizes irregular and self-similar patterns, enhancing our understanding of solar radiation variability and heterogeneity. The research uniquely fits meteorological parameters onto a global solar radiation model and focuses on the underexplored nonlinear aspects within tropical regions, specifically in the Nigerian context. Utilizing daily data from ERA INTERIM satellite archives for representative stations, the study employs nonlinear time series analysis methods like recurrence plots, recurrence qualitative analysis, and multifractal spectral analysis to comprehensively explore the unpredictable behaviors observed. The quantifier spectrums play a key role in revealing intricate scaling behaviors and correlation structures among environmental variables, shedding light on patterns often concealed by conventional statistical methods. For instance, we found that solar radiation variability in the northern region increases more significantly during the dry season compared to the wet season, unlike in the southern region. Additionally, the multifractal spectral analysis revealed a higher degree of complexity in solar radiation patterns during transition periods between seasons. The findings reveal a low recurrence quantitative analysis, long right tail, and truncations at both ends of the spectrum. This suggests instability in solar radiation across different seasons and locations. Nonetheless, the results also demonstrate that solar radiation is consistently available throughout the year, which is typical of tropical regions.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.