Grinding and the anisotropic environment: influences on the diastereoselective formation of Group 15 allyl complexes†

Lauren E. Wenger and Timothy P. Hanusa
{"title":"Grinding and the anisotropic environment: influences on the diastereoselective formation of Group 15 allyl complexes†","authors":"Lauren E. Wenger and Timothy P. Hanusa","doi":"10.1039/D4MR00001C","DOIUrl":null,"url":null,"abstract":"<p >The heavy Group 15 allyls <img> (E = As, Sb, Bi; [A′] = [1,3-(SiMe<small><sub>3</sub></small>)<small><sub>2</sub></small>C<small><sub>3</sub></small>H<small><sub>3</sub></small>]<small><sup>−</sup></small>) can be prepared either in solution or mechanochemically, and exist in two diastereomeric forms of C<small><sub>1</sub></small> and C<small><sub>3</sub></small> symmetry. For E = As and Sb, their ratio varies with the method of preparation: the C<small><sub>1</sub></small> diastereomer is the major form by both methods, but the mechanochemical route increases the C<small><sub>1</sub></small> : C<small><sub>3</sub></small> ratio compared to synthesis in hexanes solution. The difference in selectivity has previously been identified as a consequence of the layered crystal lattices of the EX<small><sub>3</sub></small> reagents, which provide a templating effect through an anisotropic grinding environment. How this selectivity changes with other typical mechanochemical variables is explored here, including the use of different reagents and LAG solvents, pre-grinding the reagents, the use of different milling media (stainless steel, Teflon, <em>etc.</em>) and apparatus (mixer mill, planetary mill), and the number and size of balls. The extent to which the anisotropic environment is either maintained or modified during synthesis (especially by LAG and the choice of metal reagent) affects the diastereomeric ratio.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00001c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00001c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heavy Group 15 allyls (E = As, Sb, Bi; [A′] = [1,3-(SiMe3)2C3H3]) can be prepared either in solution or mechanochemically, and exist in two diastereomeric forms of C1 and C3 symmetry. For E = As and Sb, their ratio varies with the method of preparation: the C1 diastereomer is the major form by both methods, but the mechanochemical route increases the C1 : C3 ratio compared to synthesis in hexanes solution. The difference in selectivity has previously been identified as a consequence of the layered crystal lattices of the EX3 reagents, which provide a templating effect through an anisotropic grinding environment. How this selectivity changes with other typical mechanochemical variables is explored here, including the use of different reagents and LAG solvents, pre-grinding the reagents, the use of different milling media (stainless steel, Teflon, etc.) and apparatus (mixer mill, planetary mill), and the number and size of balls. The extent to which the anisotropic environment is either maintained or modified during synthesis (especially by LAG and the choice of metal reagent) affects the diastereomeric ratio.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研磨和各向异性环境:对第 15 组烯丙基络合物非对映选择性形成的影响†。
第 15 组重金属烯丙基(E = As、Sb、Bi;[A′] = [1,3-(SiMe3)2C3H3]-)既可以在溶液中制备,也可以通过机械化学方法制备,存在 C1 和 C3 两种非对映对称形式。对于 E = As 和 Sb,它们的比例随制备方法的不同而变化:两种方法都以 C1 非对映异构体为主要形式,但与在溶液中合成相比,机械化学方法提高了 C1 :C3 的比例。选择性的差异以前被认为是 EX3 试剂的层状晶格造成的,这种晶格通过各向异性的研磨环境提供了模板效应。本文探讨了这种选择性如何随其他典型的机械化学变量而变化,包括使用不同的试剂和 LAG 溶剂、试剂的预研磨、使用不同的研磨介质(不锈钢、聚四氟乙烯等)和设备(混合磨、行星磨)以及球的数量和大小。合成过程中各向异性环境的维持或改变程度(尤其是 LAG 和金属试剂的选择)会影响非对映异构体的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Vortex mediated fabrication of 2D antimonene sheets from antimony powder† Mechanical approach for creating different molecular adducts and regulating salt polymorphs: a case study of the anti-inflammatory medication ensifentrine† Exploring mass transfer as a parameter in mechanochemical processes† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1