{"title":"Structural superlubricity at homogenous interface of penta-graphene","authors":"Xinqi Zhang, Jiayi Fan, Zichun Cui, Tengfei Cao, Junqin Shi, Feng Zhou, Weimin Liu, Xiaoli Fan","doi":"10.1007/s40544-023-0852-5","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) van der Waals layered materials have been widely used as lubricant. Penta-graphene (PG), a 2D carbon allotrope exclusively composed of irregular carbon pentagons has recently been predicted to have superlubricating property. In the present study, by combining the molecular dynamics simulation and first-principles calculations, we investigated the frictional property of PG in both commensurate and incommensurate contacts. Our calculations show the ultra-low friction at the interface of relatively rotated bilayer PG with twist angles of more than 10° away from the commensurate configuration. Meanwhile, our calculations demonstrate the isotropy of the ultra-low friction at the interface of incommensurate contact, in contrast to the anisotropic of the commensurate contacting interface. Additionally, the evolution of friction force and the fluctuation of potential energy along sliding path correlate closely with the interface’s structure. The energetics and charge density explain the difference between the friction at the interfaces of the commensurate and incommensurate contacts. Not only that, we found the correlation between the intrinsic structural feature and interlayer binding energy. Importantly, our findings on the retainment of the ultra-low friction under work conditions indicates that the superlubricating state of PG has good practical adaptability.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0852-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) van der Waals layered materials have been widely used as lubricant. Penta-graphene (PG), a 2D carbon allotrope exclusively composed of irregular carbon pentagons has recently been predicted to have superlubricating property. In the present study, by combining the molecular dynamics simulation and first-principles calculations, we investigated the frictional property of PG in both commensurate and incommensurate contacts. Our calculations show the ultra-low friction at the interface of relatively rotated bilayer PG with twist angles of more than 10° away from the commensurate configuration. Meanwhile, our calculations demonstrate the isotropy of the ultra-low friction at the interface of incommensurate contact, in contrast to the anisotropic of the commensurate contacting interface. Additionally, the evolution of friction force and the fluctuation of potential energy along sliding path correlate closely with the interface’s structure. The energetics and charge density explain the difference between the friction at the interfaces of the commensurate and incommensurate contacts. Not only that, we found the correlation between the intrinsic structural feature and interlayer binding energy. Importantly, our findings on the retainment of the ultra-low friction under work conditions indicates that the superlubricating state of PG has good practical adaptability.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.