Motion simulation of radio-labeled cells in whole-body positron emission tomography

Nils Marquardt, Tobias Hengsbach, Marco Mauritz, Benedikt Wirth, Klaus Schäfers
{"title":"Motion simulation of radio-labeled cells in whole-body positron emission tomography","authors":"Nils Marquardt, Tobias Hengsbach, Marco Mauritz, Benedikt Wirth, Klaus Schäfers","doi":"arxiv-2407.07709","DOIUrl":null,"url":null,"abstract":"Cell tracking is a subject of active research gathering great interest in\nmedicine and biology. Positron emission tomography (PET) is well suited for\ntracking radio-labeled cells in vivo due to its exceptional sensitivity and\nwhole-body capability. For validation, ground-truth data is desirable that\nrealistically mimics the flow of cells in a clinical situation. This study\ndevelops a workflow (CeFloPS) for simulating moving radio-labeled cells in a\nhuman phantom. From the XCAT phantom, the blood vessels are reduced to nodal\nnetworks along which cells can move and distribute to organs and tissues. The\nmovement is directed by the blood flow which is calculated in each node using\nthe Hagen-Poiseuille equation and Kirchhoffs laws assuming laminar flow. Organs\nare voxelized and movement of cells from artery entry to vein exit is generated\nvia a biased 3D random walk. The probabilities of whether cells move or stay in\ntissues are derived from rate constants of physiologically based compartment\nmodeling. PET listmode data is generated using the Monte-Carlo simulation\nframework GATE based on the definition of a large-body PET scanner with cell\npaths as moving radioactive sources and the XCAT phantom providing attenuation\ndata. From the flow simulation of 10000 cells, 100 sample cells were further\nprocessed by GATE and listmode data was reconstructed into images for\ncomparison. As demonstrated by comparisons of simulated and reconstructed cell\ndistributions, CeFloPS can realistically simulate the cell behavior of\nwhole-body PET providing valuable data for development and validation of cell\ntracking algorithms.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell tracking is a subject of active research gathering great interest in medicine and biology. Positron emission tomography (PET) is well suited for tracking radio-labeled cells in vivo due to its exceptional sensitivity and whole-body capability. For validation, ground-truth data is desirable that realistically mimics the flow of cells in a clinical situation. This study develops a workflow (CeFloPS) for simulating moving radio-labeled cells in a human phantom. From the XCAT phantom, the blood vessels are reduced to nodal networks along which cells can move and distribute to organs and tissues. The movement is directed by the blood flow which is calculated in each node using the Hagen-Poiseuille equation and Kirchhoffs laws assuming laminar flow. Organs are voxelized and movement of cells from artery entry to vein exit is generated via a biased 3D random walk. The probabilities of whether cells move or stay in tissues are derived from rate constants of physiologically based compartment modeling. PET listmode data is generated using the Monte-Carlo simulation framework GATE based on the definition of a large-body PET scanner with cell paths as moving radioactive sources and the XCAT phantom providing attenuation data. From the flow simulation of 10000 cells, 100 sample cells were further processed by GATE and listmode data was reconstructed into images for comparison. As demonstrated by comparisons of simulated and reconstructed cell distributions, CeFloPS can realistically simulate the cell behavior of whole-body PET providing valuable data for development and validation of cell tracking algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全身正电子发射断层扫描中放射性标记细胞的运动模拟
细胞追踪是医学和生物学领域的一个热门研究课题。正电子发射断层扫描(PET)具有极高的灵敏度和全身追踪能力,非常适合在体内追踪放射性标记的细胞。为了进行验证,我们需要能真实模拟临床情况下细胞流动的地面实况数据。本研究开发了一种工作流程(CeFloPS),用于模拟人体模型中移动的放射性标记细胞。在 XCAT 模型中,血管被简化为节点网络,细胞可以沿着节点网络移动并分布到器官和组织中。移动由血流引导,每个节点的血流都是通过哈根-普瓦耶方程和假设层流的基尔霍夫定律计算得出的。器官是体素化的,细胞从动脉入口到静脉出口的运动是通过有偏差的三维随机行走产生的。细胞在组织内移动或停留的概率来自基于生理学的隔室模型的速率常数。PET 列表模式数据使用蒙特卡罗模拟框架 GATE 生成,该框架基于大体 PET 扫描仪的定义,细胞路径是移动放射源,XCAT 模型提供衰减数据。从 10000 个细胞的流动模拟中,GATE 进一步处理了 100 个样本细胞,并将列表模式数据重建为图像以供比较。通过比较模拟和重建的细胞分布,CeFloPS 可以真实地模拟全身 PET 的细胞行为,为开发和验证细胞追踪算法提供了宝贵的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1