Weak convergence of tamed exponential integrators for stochastic differential equations

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING BIT Numerical Mathematics Pub Date : 2024-07-11 DOI:10.1007/s10543-024-01029-6
Utku Erdoğan, Gabriel J. Lord
{"title":"Weak convergence of tamed exponential integrators for stochastic differential equations","authors":"Utku Erdoğan, Gabriel J. Lord","doi":"10.1007/s10543-024-01029-6","DOIUrl":null,"url":null,"abstract":"<p>We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschitz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the step size unlike the GBM tamed method.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"64 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01029-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschitz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the step size unlike the GBM tamed method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程驯服指数积分器的弱收敛性
我们证明了一类基于指数的积分器对具有非全局 Lipschitz 漂移的 SDE 的一阶弱收敛性。我们的分析涵盖了基于几何布朗运动(GBM)方法的驯化版本以及标准指数方案。通过四种不同的多级蒙特卡洛技术,我们对 GBM 和指数驯化方法的数值性能进行了比较。我们发现,与 GBM 驯化法不同,对于线性噪声,标准指数驯化法需要严格限制步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
期刊最新文献
Pressure-robust approximation of the incompressible Navier–Stokes equations in a rotating frame of reference Lower error bounds and optimality of approximation for jump-diffusion SDEs with discontinuous drift Super-localized orthogonal decomposition for convection-dominated diffusion problems A robust second-order low-rank BUG integrator based on the midpoint rule Weak convergence of tamed exponential integrators for stochastic differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1