Shuru Wu, Chenyu Wang, Shuanghui Li and Jingzheng Weng
{"title":"Exploring electrode/polymer electrolyte interface chemistry and a regulating strategy of interfacial stability: a review","authors":"Shuru Wu, Chenyu Wang, Shuanghui Li and Jingzheng Weng","doi":"10.1039/D4QM00219A","DOIUrl":null,"url":null,"abstract":"<p >Polymer electrolytes have garnered considerable interest as a promising substitute owing to their exceptional mechanical flexibility, and appropriate interfacial compatibility with electrodes. However, the realization of economically viable and industrially scalable solid-state batteries with an elevated energy density and reliable cycling life remains a formidable task. The integration of high-voltage cathodes presents additional challenges, such as polymer electrolyte decomposition, consequential gas discharge, and the formation of an unstable solid–electrolyte interphase (SEI) layer on the lithium metal anode. These issues significantly impact the battery's cycling life and safety, necessitating profound attention towards enhancing the electrochemical stability of polymer electrolytes. Within this comprehensive review, we explore the problems arising from the evolution of the electrolyte/cathode and electrolyte/anode interfaces (<em>e.g.</em>, electrochemical decomposition of the electrolyte, reverse cation catalysis, degradation products, <em>etc.</em>), and propose corresponding interfacial remediation strategies (<em>e.g.</em>, <em>in situ</em> polymerization, inorganic coatings, <em>etc.</em>). Finally, we describe the persistent challenges and future perspectives aimed at providing strategies for the development of innovative polymer electrolytes capable of realizing high-performance lithium-metal batteries.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 2924-2943"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00219a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer electrolytes have garnered considerable interest as a promising substitute owing to their exceptional mechanical flexibility, and appropriate interfacial compatibility with electrodes. However, the realization of economically viable and industrially scalable solid-state batteries with an elevated energy density and reliable cycling life remains a formidable task. The integration of high-voltage cathodes presents additional challenges, such as polymer electrolyte decomposition, consequential gas discharge, and the formation of an unstable solid–electrolyte interphase (SEI) layer on the lithium metal anode. These issues significantly impact the battery's cycling life and safety, necessitating profound attention towards enhancing the electrochemical stability of polymer electrolytes. Within this comprehensive review, we explore the problems arising from the evolution of the electrolyte/cathode and electrolyte/anode interfaces (e.g., electrochemical decomposition of the electrolyte, reverse cation catalysis, degradation products, etc.), and propose corresponding interfacial remediation strategies (e.g., in situ polymerization, inorganic coatings, etc.). Finally, we describe the persistent challenges and future perspectives aimed at providing strategies for the development of innovative polymer electrolytes capable of realizing high-performance lithium-metal batteries.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.