Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions

IF 3 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Scientific Computing Pub Date : 2024-07-10 DOI:10.1137/23m1563451
Shi Jin, Xiantao Li, Nana Liu, Yue Yu
{"title":"Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions","authors":"Shi Jin, Xiantao Li, Nana Liu, Yue Yu","doi":"10.1137/23m1563451","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B403-B421, August 2024. <br/> Abstract. Quantum dynamics, typically expressed in the form of a time-dependent Schrödinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABCs) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms cannot be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schrödingerization method that converts non-Hermitian dynamics into a Schrödinger form for the artificial boundary problems [S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022], [S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1563451","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B403-B421, August 2024.
Abstract. Quantum dynamics, typically expressed in the form of a time-dependent Schrödinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABCs) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms cannot be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schrödingerization method that converts non-Hermitian dynamics into a Schrödinger form for the artificial boundary problems [S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022], [S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带人工边界条件的量子动力学量子模拟
SIAM 科学计算期刊》,第 46 卷第 4 期,第 B403-B421 页,2024 年 8 月。 摘要量子动力学通常以具有赫米特哈密顿的时变薛定谔方程的形式表示,是量子计算的自然应用。然而,在模拟涉及电子发射的量子动力学时,有必要使用人工边界条件(ABC)将计算限制在一个固定的域内。ABC 的引入改变了动力学的哈密顿结构,现有的量子算法无法直接应用,因为演化不再是单一的。本文利用最近引入的薛定谔化方法,将非赫米态动力学转换为薛定谔形式,用于人工边界问题 [S. Jin, N. Liu, and Y. J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J.S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022],[S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]。我们针对三种 ABC 实现了这种方法,包括复杂吸收势技术、完全匹配层方法和 Dirichlet 到 Neumann 方法。我们分析了这些算法的查询复杂度,并通过数值实验证明了这种方法的有效性。这有助于缩小现有量子算法与无界域量子动力学计算模型之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
3.20%
发文量
209
审稿时长
1 months
期刊介绍: The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems. SISC papers are classified into three categories: 1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms. 2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist. 3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.
期刊最新文献
Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation Interpolating Parametrized Quantum Circuits Using Blackbox Queries Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes The Sparse-Grid-Based Adaptive Spectral Koopman Method Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1