Complexity of Finite-Sum Optimization with Nonsmooth Composite Functions and Non-Lipschitz Regularization

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-07-10 DOI:10.1137/23m1546701
Xiao Wang, Xiaojun Chen
{"title":"Complexity of Finite-Sum Optimization with Nonsmooth Composite Functions and Non-Lipschitz Regularization","authors":"Xiao Wang, Xiaojun Chen","doi":"10.1137/23m1546701","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2472-2502, September 2024. <br/> Abstract. In this paper, we present complexity analysis of proximal inexact gradient methods for finite-sum optimization with a nonconvex nonsmooth composite function and non-Lipschitz regularization. By getting access to a convex approximation to the Lipschitz function and a Lipschitz continuous approximation to the non-Lipschitz regularizer, we construct a proximal subproblem at each iteration without using exact function values and gradients. With certain accuracy control on inexact gradients and subproblem solutions, we show that the oracle complexity in terms of total number of inexact gradient evaluations is in order [math] to find an [math]-approximate first-order stationary point, ensuring that within a [math]-ball centered at this point the maximum reduction of an approximation model does not exceed [math]. This shows that we can have the same worst-case evaluation complexity order as in [C. Cartis, N. I. M. Gould, and P. L. Toint, SIAM J. Optim., 21 (2011), pp. 1721–1739, X. Chen, Ph. L. Toint, and H. Wang, SIAM J. Optim., 29 (2019), pp. 874–903], even if we introduce the non-Lipschitz singularity and the nonconvex nonsmooth composite function in the objective function. Moreover, we establish that the oracle complexity regarding the total number of stochastic oracles is in order [math] with high probability for stochastic proximal inexact gradient methods. We further extend the algorithm to adjust to solving stochastic problems with expectation form and derive the associated oracle complexity in order [math] with high probability.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1546701","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2472-2502, September 2024.
Abstract. In this paper, we present complexity analysis of proximal inexact gradient methods for finite-sum optimization with a nonconvex nonsmooth composite function and non-Lipschitz regularization. By getting access to a convex approximation to the Lipschitz function and a Lipschitz continuous approximation to the non-Lipschitz regularizer, we construct a proximal subproblem at each iteration without using exact function values and gradients. With certain accuracy control on inexact gradients and subproblem solutions, we show that the oracle complexity in terms of total number of inexact gradient evaluations is in order [math] to find an [math]-approximate first-order stationary point, ensuring that within a [math]-ball centered at this point the maximum reduction of an approximation model does not exceed [math]. This shows that we can have the same worst-case evaluation complexity order as in [C. Cartis, N. I. M. Gould, and P. L. Toint, SIAM J. Optim., 21 (2011), pp. 1721–1739, X. Chen, Ph. L. Toint, and H. Wang, SIAM J. Optim., 29 (2019), pp. 874–903], even if we introduce the non-Lipschitz singularity and the nonconvex nonsmooth composite function in the objective function. Moreover, we establish that the oracle complexity regarding the total number of stochastic oracles is in order [math] with high probability for stochastic proximal inexact gradient methods. We further extend the algorithm to adjust to solving stochastic problems with expectation form and derive the associated oracle complexity in order [math] with high probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非光滑复合函数和非 Lipschitz 正则化的有限和优化的复杂性
SIAM 优化期刊》,第 34 卷第 3 期,第 2472-2502 页,2024 年 9 月。 摘要本文提出了近似非精确梯度方法的复杂性分析,用于非凸非光滑复合函数和非 Lipschitz 正则化的有限和优化。通过获取 Lipschitz 函数的凸近似值和非 Lipschitz 正则化的 Lipschitz 连续近似值,我们可以在每次迭代时构建一个近似子问题,而无需使用精确的函数值和梯度。在对非精确梯度和子问题解进行一定精度控制的情况下,我们证明了以非精确梯度求值总数为单位的oracle复杂度是[math],以找到一个[math]近似的一阶静止点,确保在以该点为中心的[math]球内,近似模型的最大还原度不超过[math]。这表明,我们可以获得与 [C. Cartis, N. I.] 中相同的最坏情况评估复杂度阶次。Cartis、N. I.M. Gould, and P. L. Toint, SIAM J. Optim., 21 (2011), pp.此外,我们还证明,对于随机近似不精确梯度法来说,关于随机神谕总数的神谕复杂度很有可能是[math]。我们进一步扩展了该算法,以适应求解期望形式的随机问题,并推导出相关的神谕复杂度以高概率为[math]阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1