Phatchanat Klaihmon, Parinya Samart, Yon Rojanasakul, Surapol Issaragrisil, Sudjit Luanpitpong
{"title":"Anti-TIM3 chimeric antigen receptor-natural killer cells preferentially target primitive acute myeloid leukemia cells with minimal fratricide and exhaustion","authors":"Phatchanat Klaihmon, Parinya Samart, Yon Rojanasakul, Surapol Issaragrisil, Sudjit Luanpitpong","doi":"10.1186/s40164-024-00534-2","DOIUrl":null,"url":null,"abstract":"Acute myeloid leukemia (AML) is an aggressive and genetically heterogeneous disease with poor clinical outcomes. Refractory AML is common, and relapse remains a major challenge, attributable to the presence of therapy-resistant leukemic stem cells (LSCs), which possess self-renewal and repopulating capability. Targeting LSCs is currently the most promising avenue for long-term management of AML. Likewise, chimeric antigen receptor (CAR)-natural killer (NK) cells have emerged as a promising alternative to CAR-T cells due to their intrinsic potential as off-the-shelf products and safer clinical profiles. Here, we introduced a third-generation CAR harboring TIM3 scFv, CD28, 4-1BB, and CD3ζ (CAR-TIM3) into human NK-92 cells, the only FDA-approved NK cell line for clinical trials. TIM3 was chosen as a target antigen owing to its differential expression in LSCs and normal hematopoietic stem/progenitor cells (HSPCs). The established CAR-TIM3 NK-92 cells effectively targeted TIM3 and displayed potent anti-tumor activity against various primitive AML cells, subsequently causing a reduction in leukemic clonogenic growth in vitro, while having minimal effects on HSPCs. CAR-TIM3 NK-92 cells significantly reduced leukemic burden in vivo and interestingly suppressed the engraftment of AML cells into the mouse liver and bone marrow. Surprisingly, we found that CAR-TIM3 NK-92 cells expressed relatively low surface TIM3, leading to a low fratricidal effect. As TIM3 and PD-1 are immune checkpoints involved in NK cell dysfunction, we further tested and found that CAR-TIM3 NK-92 cells are beneficial for alleviating NK cell exhaustion. Our findings highlight the potential application of CAR-TIM3 NK cells for cellular immunotherapy for TIM3+ AML.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00534-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is an aggressive and genetically heterogeneous disease with poor clinical outcomes. Refractory AML is common, and relapse remains a major challenge, attributable to the presence of therapy-resistant leukemic stem cells (LSCs), which possess self-renewal and repopulating capability. Targeting LSCs is currently the most promising avenue for long-term management of AML. Likewise, chimeric antigen receptor (CAR)-natural killer (NK) cells have emerged as a promising alternative to CAR-T cells due to their intrinsic potential as off-the-shelf products and safer clinical profiles. Here, we introduced a third-generation CAR harboring TIM3 scFv, CD28, 4-1BB, and CD3ζ (CAR-TIM3) into human NK-92 cells, the only FDA-approved NK cell line for clinical trials. TIM3 was chosen as a target antigen owing to its differential expression in LSCs and normal hematopoietic stem/progenitor cells (HSPCs). The established CAR-TIM3 NK-92 cells effectively targeted TIM3 and displayed potent anti-tumor activity against various primitive AML cells, subsequently causing a reduction in leukemic clonogenic growth in vitro, while having minimal effects on HSPCs. CAR-TIM3 NK-92 cells significantly reduced leukemic burden in vivo and interestingly suppressed the engraftment of AML cells into the mouse liver and bone marrow. Surprisingly, we found that CAR-TIM3 NK-92 cells expressed relatively low surface TIM3, leading to a low fratricidal effect. As TIM3 and PD-1 are immune checkpoints involved in NK cell dysfunction, we further tested and found that CAR-TIM3 NK-92 cells are beneficial for alleviating NK cell exhaustion. Our findings highlight the potential application of CAR-TIM3 NK cells for cellular immunotherapy for TIM3+ AML.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.