Effect of synthesis process on the Li-ion conductivity of LiTa2PO8 solid electrolyte materials for all-solid-state batteries†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-07-11 DOI:10.1039/D4YA00180J
Hayami Takeda, Miki Shibasaki, Kento Murakami, Miki Tanaka, Keisuke Makino, Naoto Tanibata, Hirotaka Maeda and Masanobu Nakayama
{"title":"Effect of synthesis process on the Li-ion conductivity of LiTa2PO8 solid electrolyte materials for all-solid-state batteries†","authors":"Hayami Takeda, Miki Shibasaki, Kento Murakami, Miki Tanaka, Keisuke Makino, Naoto Tanibata, Hirotaka Maeda and Masanobu Nakayama","doi":"10.1039/D4YA00180J","DOIUrl":null,"url":null,"abstract":"<p >Inorganic solid electrolytes are essential for developing safe and non-flammable all-solid-state batteries, with oxide-based ones having attracted attention owing to their excellent chemical stability. Recently, a new solid electrolyte material LiTa<small><sub>2</sub></small>PO<small><sub>8</sub></small> (LTPO) was reported to have a bulk lithium-ion conductivity of 1.6 mS cm<small><sup>−1</sup></small> at room temperature, which is one of the highest among oxide solid electrolytes. However, oxide solid electrolytes tend to have a high grain boundary resistivity and must be formed into dense sintered pellets. In this study, different dense LTPO materials were synthesised by adjusting the size of the starting powder particles, and their ionic conductivities were systematically investigated. Counterintuitively, larger raw particles resulted in a lower grain boundary resistivity. This was attributed to the micromorphology of the sintered pellets. The grain boundary resistance varied by up to one order of magnitude under the investigated synthesis conditions, and the optimised total ionic conductivity (including the bulk and grain boundary contributions) of LTPO was 0.95 mS cm<small><sup>−1</sup></small> at 30 °C.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00180j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00180j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic solid electrolytes are essential for developing safe and non-flammable all-solid-state batteries, with oxide-based ones having attracted attention owing to their excellent chemical stability. Recently, a new solid electrolyte material LiTa2PO8 (LTPO) was reported to have a bulk lithium-ion conductivity of 1.6 mS cm−1 at room temperature, which is one of the highest among oxide solid electrolytes. However, oxide solid electrolytes tend to have a high grain boundary resistivity and must be formed into dense sintered pellets. In this study, different dense LTPO materials were synthesised by adjusting the size of the starting powder particles, and their ionic conductivities were systematically investigated. Counterintuitively, larger raw particles resulted in a lower grain boundary resistivity. This was attributed to the micromorphology of the sintered pellets. The grain boundary resistance varied by up to one order of magnitude under the investigated synthesis conditions, and the optimised total ionic conductivity (including the bulk and grain boundary contributions) of LTPO was 0.95 mS cm−1 at 30 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成工艺对全固态电池用 LiTa2PO8 固体电解质材料锂离子传导性的影响
无机固态电解质对于开发安全、不易燃的全固态电池至关重要,而基于氧化物的无机固态电解质因其出色的化学稳定性而备受关注。最近,有报道称一种新型固态电解质材料 LiTa2PO8(LTPO)在室温下的体锂离子电导率为 1.6 mS cm-1,是氧化物固态电解质中最高的之一。然而,氧化物固体电解质往往具有较高的晶界电阻率,因此必须形成致密的烧结颗粒。本研究通过调整起始粉末颗粒的大小,合成了不同的致密 LTPO 材料,并系统地研究了它们的离子电导率。与直觉相反,较大的原始颗粒会导致较低的晶界电阻率。这归因于烧结颗粒的微观形态以及与 P 挥发相关的 LiTa3O8 杂质的形成。在所研究的合成条件下,晶界电阻最多相差一个数量级,在 30 °C 时,LTPO 的优化总离子电导率(包括块体和晶界贡献)为 0.95 mS cm-1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Boosting Ethylene Yield via Synergistic 2D/0D Nanostructured VCu Layered Double Hydroxide/TiO2 Catalyst in Electrochemical CO2 Reduction Effective electrochemical water oxidation to H2O2 based on bimetallic Fe/Co metal-organic framework Open Circuit Voltage of an All-Vanadium Redox Flow Battery as a Function of the State of Charge obtained from UV-Vis Spectroscopy Back cover Ag-NiP Deposited Green Carbon Channels Embedded NiP Panels for Sustainable Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1