Jie Zhang, Rusong Nie, Yongchang Tan, MaoTong Huang, Yafeng Li, Yipeng Guo
{"title":"Investigation of the parallel gradation method based on response of ballast penetration into subgrade soil by discrete element method","authors":"Jie Zhang, Rusong Nie, Yongchang Tan, MaoTong Huang, Yafeng Li, Yipeng Guo","doi":"10.1007/s40571-024-00795-y","DOIUrl":null,"url":null,"abstract":"<p>Treating ballast and subgrade soil as an integrated unit for sampling and loading has proven to be an effective method for investigating the interaction between ballast and subgrade soil. Given that direct testing of specimens containing large ballast is constrained by the capabilities of standard laboratory equipment, adopting a model material of smaller size is recommended. Parallel gradation method is widely used for this purpose. This study performed an evaluation of parallel gradation method based on the response of ballast penetration into subgrade soil. Discrete element models were developed to simulate the penetration of crushed ballast, featuring three different parallel gradations, into subgrade soil. On this basis, dynamic triaxial simulations were conducted on these models. By comparing the macroscopic and mesoscopic mechanical characteristics at different scaling ratio, the applicability of the parallel gradation method for assessing ballast penetration into subgrade soil was evaluated. At the macroscopic scale, the scaling ratio of crushed ballast significantly influences the axial, volumetric, and lateral deformations observed during penetration into subgrade soil. Specifically, a smaller average grain size of ballast correlates with reduced deformations in these specimens. The penetration of crushed ballast into subgrade soil significantly increases the porosity of subgrade soil, particularly at the interface between ballast and subgrade. This increase in porosity is more pronounced with larger average grain sizes of ballast. At the mesoscopic scale, larger average grain sizes of ballast lead to more localized high contact forces and more significant stress concentrations. The parallel gradation method substantially affects the mechanical properties of ballast penetration into subgrade soil, at both macroscopic and mesoscopic scales. Therefore, a cautious approach is necessary when relying on this method for precise assessments.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"71 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00795-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Treating ballast and subgrade soil as an integrated unit for sampling and loading has proven to be an effective method for investigating the interaction between ballast and subgrade soil. Given that direct testing of specimens containing large ballast is constrained by the capabilities of standard laboratory equipment, adopting a model material of smaller size is recommended. Parallel gradation method is widely used for this purpose. This study performed an evaluation of parallel gradation method based on the response of ballast penetration into subgrade soil. Discrete element models were developed to simulate the penetration of crushed ballast, featuring three different parallel gradations, into subgrade soil. On this basis, dynamic triaxial simulations were conducted on these models. By comparing the macroscopic and mesoscopic mechanical characteristics at different scaling ratio, the applicability of the parallel gradation method for assessing ballast penetration into subgrade soil was evaluated. At the macroscopic scale, the scaling ratio of crushed ballast significantly influences the axial, volumetric, and lateral deformations observed during penetration into subgrade soil. Specifically, a smaller average grain size of ballast correlates with reduced deformations in these specimens. The penetration of crushed ballast into subgrade soil significantly increases the porosity of subgrade soil, particularly at the interface between ballast and subgrade. This increase in porosity is more pronounced with larger average grain sizes of ballast. At the mesoscopic scale, larger average grain sizes of ballast lead to more localized high contact forces and more significant stress concentrations. The parallel gradation method substantially affects the mechanical properties of ballast penetration into subgrade soil, at both macroscopic and mesoscopic scales. Therefore, a cautious approach is necessary when relying on this method for precise assessments.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.