Chromatography Chronicles: Unveiling the Power of Reversed-phase High-performance Thin Layer Chromatography in Pharmaceutical Analysis

IF 1.7 4区 化学 Q3 CHEMISTRY, ANALYTICAL Current Analytical Chemistry Pub Date : 2024-07-10 DOI:10.2174/0115734110320008240628090739
Hetvi Pandya, Dev Devaliya, Akshi Shah, Rajendra Kotadiya
{"title":"Chromatography Chronicles: Unveiling the Power of Reversed-phase High-performance Thin Layer Chromatography in Pharmaceutical Analysis","authors":"Hetvi Pandya, Dev Devaliya, Akshi Shah, Rajendra Kotadiya","doi":"10.2174/0115734110320008240628090739","DOIUrl":null,"url":null,"abstract":"Pharmaceutical analysis is critical in ensuring the quality and safety of drug substances and formulations. High-performance thin-layer Chromatography (HPTLC) has emerged as a powerful analytical technique in the pharmaceutical industry due to its numerous advantages, including high separation efficiency, cost-effectiveness, and ease of sample preparation. One of its variants, Reversed-Phase High-Performance Thin-Layer Chromatography (RP-HPTLC), has gained immense popularity for analyzing nonpolar and slightly polar compounds, including drugs and their metabolites. This review paper draws attention to history and the recent developments in RP-HPTLC for pharmaceutical analysis. It highlights the advantages and limitations of RP-HPTLC, discussing its applications in drug analysis, impurity determination, stability-indicating assays, and more. In this study, recent advances in RP-HPTLC instrumentation and techniques were reviewed, including hyphenated methods, such as Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Mass Spectrometry and Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Nuclear Magnetic Resonance. Through this comprehensive analysis, the authors aim to underscore the potential of RP-HPTLC as a reliable and efficient analytical technique in the pharmaceutical industry and shed light on future trends in this field.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"39 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110320008240628090739","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmaceutical analysis is critical in ensuring the quality and safety of drug substances and formulations. High-performance thin-layer Chromatography (HPTLC) has emerged as a powerful analytical technique in the pharmaceutical industry due to its numerous advantages, including high separation efficiency, cost-effectiveness, and ease of sample preparation. One of its variants, Reversed-Phase High-Performance Thin-Layer Chromatography (RP-HPTLC), has gained immense popularity for analyzing nonpolar and slightly polar compounds, including drugs and their metabolites. This review paper draws attention to history and the recent developments in RP-HPTLC for pharmaceutical analysis. It highlights the advantages and limitations of RP-HPTLC, discussing its applications in drug analysis, impurity determination, stability-indicating assays, and more. In this study, recent advances in RP-HPTLC instrumentation and techniques were reviewed, including hyphenated methods, such as Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Mass Spectrometry and Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Nuclear Magnetic Resonance. Through this comprehensive analysis, the authors aim to underscore the potential of RP-HPTLC as a reliable and efficient analytical technique in the pharmaceutical industry and shed light on future trends in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
色谱编年史:揭示反相高效薄层色谱法在药物分析中的强大功能
药物分析对于确保药物和制剂的质量与安全至关重要。高效薄层色谱法(HPTLC)具有分离效率高、成本效益高、样品制备简便等众多优点,已成为制药行业一种强大的分析技术。反相高效薄层色谱(RP-HPTLC)是其变体之一,在分析非极性和轻微极性化合物(包括药物及其代谢物)方面大受欢迎。本综述介绍了 RP-HPTLC 在药物分析方面的历史和最新发展。它强调了 RP-HPTLC 的优势和局限性,讨论了它在药物分析、杂质测定、稳定性指示测定等方面的应用。本研究回顾了 RP-HPTLC 仪器和技术的最新进展,包括连用方法,如反相高效薄层色谱-质谱联用法和反相高效薄层色谱-核磁共振联用法。通过这一全面分析,作者旨在强调 RP-HPTLC 作为制药行业可靠、高效分析技术的潜力,并阐明该领域的未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Analytical Chemistry
Current Analytical Chemistry 化学-分析化学
CiteScore
4.10
自引率
0.00%
发文量
90
审稿时长
9 months
期刊介绍: Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.
期刊最新文献
Purification and Kinetics of Chlorogenic Acid from Eucommia ulmoides Oliver Leaves by Macroporous Resins Combined with First-Principles Calculation Research Progress in Starch-based Dye Adsorbents Electrochemical Behavior of an Anti-cancer Drug Erlotinib at Screen-Printed Electrode and its Analytical Application Polygonum hydropiper Leaves have More Medicinal Value than Stems: Based on Chemical Composition and Antioxidant Activity In silico Investigation and Molecular Docking Studies of Pyrazole Incorporated Thiadiazole Derivatives for Antimicrobial Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1