Wenju Liu , Fuqiang Gao , Shuangyong Dong , Shuwen Cao
{"title":"Understanding energy transformation mechanism of rockbursts through experimental and theoretical methods","authors":"Wenju Liu , Fuqiang Gao , Shuangyong Dong , Shuwen Cao","doi":"10.1016/j.ijrmms.2024.105827","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the energy transformation mechanism in rockbursts is essential for predicting and mitigating potentially catastrophic rock failures. In this study, Double Springs Release Tests (DSRTs) were proposed in a laboratory setting to investigate the energy transformation of rockbursts from inception to development. High-speed cameras and image processing algorithms were utilized to calculate different types of energy throughout the duration of the burst. Theoretical analyses, grounded in structural dynamics and stress wave equations, was conducted and cross-referenced with the experimental results. The study found that wave impedance <span><math><mrow><msqrt><mrow><mi>ρ</mi><mi>E</mi></mrow></msqrt></mrow></math></span> is a key indicator of burst intensity. The research demonstrated that the impact energy in DSRTs originates from both the impact medium and the surrounding medium, and explored how these two components contribute to the total impact energy of the impact medium.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924001928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the energy transformation mechanism in rockbursts is essential for predicting and mitigating potentially catastrophic rock failures. In this study, Double Springs Release Tests (DSRTs) were proposed in a laboratory setting to investigate the energy transformation of rockbursts from inception to development. High-speed cameras and image processing algorithms were utilized to calculate different types of energy throughout the duration of the burst. Theoretical analyses, grounded in structural dynamics and stress wave equations, was conducted and cross-referenced with the experimental results. The study found that wave impedance is a key indicator of burst intensity. The research demonstrated that the impact energy in DSRTs originates from both the impact medium and the surrounding medium, and explored how these two components contribute to the total impact energy of the impact medium.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.