Construction of multilayered small intestine-like tissue by reproducing interstitial flow

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING Cell stem cell Pub Date : 2024-07-11 DOI:10.1016/j.stem.2024.06.012
Sayaka Deguchi, Kaori Kosugi, Naoki Takeishi, Yukio Watanabe, Shiho Morimoto, Ryosuke Negoro, Fuki Yokoi, Hiroki Futatsusako, May Nakajima-Koyama, Mio Iwasaki, Takuya Yamamoto, Yoshiya Kawaguchi, Yu-suke Torisawa, Kazuo Takayama
{"title":"Construction of multilayered small intestine-like tissue by reproducing interstitial flow","authors":"Sayaka Deguchi, Kaori Kosugi, Naoki Takeishi, Yukio Watanabe, Shiho Morimoto, Ryosuke Negoro, Fuki Yokoi, Hiroki Futatsusako, May Nakajima-Koyama, Mio Iwasaki, Takuya Yamamoto, Yoshiya Kawaguchi, Yu-suke Torisawa, Kazuo Takayama","doi":"10.1016/j.stem.2024.06.012","DOIUrl":null,"url":null,"abstract":"<p>Recent advances have made modeling human small intestines <em>in vitro</em> possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an <em>in vivo</em>-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":null,"pages":null},"PeriodicalIF":19.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.06.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances have made modeling human small intestines in vitro possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an in vivo-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过再现间隙流构建多层小肠样组织
最近的研究进展使体外模拟人类小肠成为可能,但要完全再现其结构和功能特征仍是一项挑战。我们怀疑胚胎器官形成过程中由循环血浆驱动的肠道内间隙流动是一个重要因素。我们的目标是通过在系统中加入间隙流来构建类似活体的多层小肠组织,进而通过在能够复制间隙流的微流体装置上同时分化人类多能干细胞的确定性内胚层和中胚层细胞来开发微型小肠系统。这种方法提高了细胞的成熟度,并培育出了具有绒毛状上皮和排列整齐的间质层的三维小肠样组织。我们的微型小肠系统不仅克服了传统肠道模型的局限性,还为深入了解肠道组织发育的详细机制提供了一个独特的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
期刊最新文献
Human pluripotent stem cell-derived organoids repair damaged bowel in vivo Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids A one-way street recognition approach to mediate allogeneic immune cell therapies Acetate to the rescue: Acetyl-CoA facilitates placental development Alveolar regeneration by airway secretory-cell-derived p63+ progenitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1