{"title":"Update on RYR1-related myopathies.","authors":"Masashi Ogasawara, Ichizo Nishino","doi":"10.1097/WCO.0000000000001296","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>RYR1-related myopathy (RYR1-RM) is a group of myopathies caused by mutations in the RYR1 gene, which encodes the ryanodine receptor 1 (RYR1). This review discusses recent advances in the clinical features, pathology, pathogenesis, and therapeutics of RYR1-RM.</p><p><strong>Recent findings: </strong>Although treatments such as salbutamol, pyridostigmine, and N-acetylcysteine have been explored as potential therapies for RYR1-RM, none have been conclusively proven to be effective. However, recent clinical trials of Rycal ARM210 in patients with RYR1-RM have shown promising results, including reduced fatigue and improved proximal muscle strength.Recent advances in three-dimensional structural analysis of RYR1 channels, facilitated by cryo-electron microscopy (cryo-EM), have elucidated the distinct molecular mechanisms underlying RYR1 functionality. Additionally, high-throughput screening methods, including FRET-based and endoplasmic reticulum Ca 2+ -based assays, have been successful in identifying potential candidates for the treatment of RYR1-RM.</p><p><strong>Summary: </strong>Recent advances in clinical and pathological understanding have provided new insights into RYR1-RM. Novel pathomechanisms elucidated by cryo-EM and rapid screening methods have led to the identification of several promising drug candidates. We are hopeful about the potential of Rycal, other new drugs, and gene therapy, offering a promising outlook for the future.</p>","PeriodicalId":11059,"journal":{"name":"Current Opinion in Neurology","volume":" ","pages":"504-508"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WCO.0000000000001296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: RYR1-related myopathy (RYR1-RM) is a group of myopathies caused by mutations in the RYR1 gene, which encodes the ryanodine receptor 1 (RYR1). This review discusses recent advances in the clinical features, pathology, pathogenesis, and therapeutics of RYR1-RM.
Recent findings: Although treatments such as salbutamol, pyridostigmine, and N-acetylcysteine have been explored as potential therapies for RYR1-RM, none have been conclusively proven to be effective. However, recent clinical trials of Rycal ARM210 in patients with RYR1-RM have shown promising results, including reduced fatigue and improved proximal muscle strength.Recent advances in three-dimensional structural analysis of RYR1 channels, facilitated by cryo-electron microscopy (cryo-EM), have elucidated the distinct molecular mechanisms underlying RYR1 functionality. Additionally, high-throughput screening methods, including FRET-based and endoplasmic reticulum Ca 2+ -based assays, have been successful in identifying potential candidates for the treatment of RYR1-RM.
Summary: Recent advances in clinical and pathological understanding have provided new insights into RYR1-RM. Novel pathomechanisms elucidated by cryo-EM and rapid screening methods have led to the identification of several promising drug candidates. We are hopeful about the potential of Rycal, other new drugs, and gene therapy, offering a promising outlook for the future.
期刊介绍:
Current Opinion in Neurology is a highly regarded journal offering insightful editorials and on-the-mark invited reviews; covering key subjects such as cerebrovascular disease, developmental disorders, neuroimaging and demyelinating diseases. Published bimonthly, each issue of Current Opinion in Neurology introduces world renowned guest editors and internationally recognized academics within the neurology field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.