Sokratis Kariotis, Pei Fang Tan, Haiping Lu, Christopher J Rhodes, Martin R Wilkins, Allan Lawrie, Dennis Wang
{"title":"Omada: robust clustering of transcriptomes through multiple testing.","authors":"Sokratis Kariotis, Pei Fang Tan, Haiping Lu, Christopher J Rhodes, Martin R Wilkins, Allan Lawrie, Dennis Wang","doi":"10.1093/gigascience/giae039","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning-based functions.</p><p><strong>Findings: </strong>The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit's decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.</p><p><strong>Conclusions: </strong>In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning-based functions.
Findings: The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit's decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.
Conclusions: In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.