{"title":"Bi-SeqCNN: A Novel Light-Weight Bi-Directional CNN Architecture for Protein Function Prediction","authors":"Vikash Kumar;Akshay Deepak;Ashish Ranjan;Aravind Prakash","doi":"10.1109/TCBB.2024.3426491","DOIUrl":null,"url":null,"abstract":"Deep learning approaches, such as convolution neural networks (CNNs) and deep recurrent neural networks (RNNs), have been the backbone for predicting protein function, with promising state-of-the-art (SOTA) results. RNNs with an in-built ability (i) focus on past information, (ii) collect both \n<i>short-and-long</i>\n range dependency information, and (iii) bi-directional processing offers a strong sequential processing mechanism. CNNs, however, are confined to focusing on \n<i>short-term</i>\n information from both the past and the future, although they offer parallelism. Therefore, a novel \n<i>bi-directional CNN</i>\n that strictly complies with the sequential processing mechanism of RNNs is introduced and is used for developing a protein function prediction framework, Bi-SeqCNN. This is a sub-sequence-based framework. Further, Bi-SeqCNN\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\n is an ensemble approach to better the prediction results. To our knowledge, this is the first time \n<i>bi-directional CNNs</i>\n are employed for general temporal data analysis and not just for protein sequences. The proposed architecture produces improvements up to +5.5% over contemporary SOTA methods on three benchmark protein sequence datasets. Moreover, it is substantially lighter and attain these results with (0.50–0.70 times) fewer parameters than the SOTA methods.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"1922-1933"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10595435/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning approaches, such as convolution neural networks (CNNs) and deep recurrent neural networks (RNNs), have been the backbone for predicting protein function, with promising state-of-the-art (SOTA) results. RNNs with an in-built ability (i) focus on past information, (ii) collect both
short-and-long
range dependency information, and (iii) bi-directional processing offers a strong sequential processing mechanism. CNNs, however, are confined to focusing on
short-term
information from both the past and the future, although they offer parallelism. Therefore, a novel
bi-directional CNN
that strictly complies with the sequential processing mechanism of RNNs is introduced and is used for developing a protein function prediction framework, Bi-SeqCNN. This is a sub-sequence-based framework. Further, Bi-SeqCNN
$^+$
is an ensemble approach to better the prediction results. To our knowledge, this is the first time
bi-directional CNNs
are employed for general temporal data analysis and not just for protein sequences. The proposed architecture produces improvements up to +5.5% over contemporary SOTA methods on three benchmark protein sequence datasets. Moreover, it is substantially lighter and attain these results with (0.50–0.70 times) fewer parameters than the SOTA methods.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system