Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis.

Shunxing Bao, Ho Hin Lee, Qi Yang, Lucas W Remedios, Ruining Deng, Can Cui, Leon Y Cai, Kaiwen Xu, Xin Yu, Sophie Chiron, Yike Li, Nathan Heath Patterson, Yaohong Wang, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Lori A Coburn, Keith T Wilson, Bennett A Landman, Yuankai Huo
{"title":"Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis.","authors":"Shunxing Bao, Ho Hin Lee, Qi Yang, Lucas W Remedios, Ruining Deng, Can Cui, Leon Y Cai, Kaiwen Xu, Xin Yu, Sophie Chiron, Yike Li, Nathan Heath Patterson, Yaohong Wang, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Lori A Coburn, Keith T Wilson, Bennett A Landman, Yuankai Huo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"1406-1422"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高分辨率组织学整张切片图像合成中利用随机漫步滑动窗口缓解平铺效应
多重免疫荧光(MxIF)是一种先进的分子成像技术,可在单个组织切片上同时为生物学家提供多种(即 20 多种)分子标记。遗憾的是,由于成像限制,在同一组织切片上通常无法使用常规使用的苏木精和伊红(H&E)染色。由于生物 H&E 染色不可行,以前曾有人通过深度学习虚拟染色,从 MxIF 获取 H&E 全切片图像(WSI)。然而,平铺效应是高分辨率 WSI 合成中的一个长期问题。从 MxIF 到 H&E 的合成也不例外。受限于计算资源,交叉染色图像合成通常在斑块级进行。因此,在将所有单个斑块组装回 WSI 的过程中,可能会在视觉上识别出不连续的强度和斑块边界。在这项工作中,我们提出了一种基于深度学习的无配对高分辨率图像合成方法,以从 MxIF WSI(每个 WSI 有 27 个标记/污点)中获得虚拟 H&E WSI,并减少平铺效应。简而言之,我们首先扩展了 CycleGAN 框架,添加了同步的细胞核和粘蛋白分割监督作为空间约束。然后,我们在优化推理阶段引入了随机漫步滑动窗口移动策略,以减轻堆叠效应。验证结果表明,我们的空间约束合成方法在下游细胞分割任务中实现了 56% 的性能提升。所提出的推理方法在不影响性能的前提下减少了 50% 的计算资源,从而降低了平铺效应。所提出的随机滑动窗口推理方法是一个即插即用的模块,可以推广到其他高分辨率 WSI 图像合成应用中。我们提出的模型的源代码可在 https://github.com/MASILab/RandomWalkSlidingWindow.git 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1