Solid-State NMR 13C sensitivity at high magnetic field

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of magnetic resonance Pub Date : 2024-06-18 DOI:10.1016/j.jmr.2024.107709
Ruixian Han , Collin G. Borcik , Songlin Wang , Owen A. Warmuth , Kevin Geohring , Charles Mullen , Mario Incitti , John A. Stringer , Chad M. Rienstra
{"title":"Solid-State NMR 13C sensitivity at high magnetic field","authors":"Ruixian Han ,&nbsp;Collin G. Borcik ,&nbsp;Songlin Wang ,&nbsp;Owen A. Warmuth ,&nbsp;Kevin Geohring ,&nbsp;Charles Mullen ,&nbsp;Mario Incitti ,&nbsp;John A. Stringer ,&nbsp;Chad M. Rienstra","doi":"10.1016/j.jmr.2024.107709","DOIUrl":null,"url":null,"abstract":"<div><p>Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B<sub>0</sub>) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B<sub>0</sub> field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B<sub>0</sub> to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz <sup>1</sup>H and 151 MHz <sup>13</sup>C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B<sub>0</sub> fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of <sup>13</sup>C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B<sub>0</sub> dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"365 ","pages":"Article 107709"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000934","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B0) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B0 field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B0 to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz 1H and 151 MHz 13C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B0 fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of 13C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B0 dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态 NMR 13C 在高磁场下的灵敏度。
灵敏度是每个 NMR 实验的基础,信噪比(SNR)应随静态(B0)磁场的增加而增加,其比例主要取决于 NMR 探头和接收器的设计。在低 B0 磁场极限中,线圈的几何尺寸远小于 NMR 频率的波长,信噪比可随 B0 的增加而增加,其增加比例为 7/4 的幂。对于现代魔角旋转 (MAS) 探头,在 14.1 特斯拉 (T) 条件下,转子尺寸最大为 3.2 毫米,对应 600 MHz 1H 和 151 MHz 13C 拉莫尔频率时,这一近似值成立。要想获得更大线圈和/或更高 B0 场的预期效益,就需要利用标准样本和协议对信噪比的贡献进行定量了解,从而高精度、高准确性地再现信噪比测量结果。我们评估了一系列使用 1.6、2.5 和 3.2 毫米转子的探针设计,包括使用五台光谱仪对 17 种探针配置进行的 24 组不同测量。我们使用 N-乙酰缬氨酸作为主要标准,并与其他常用标准样品(金刚烷、甘氨酸、六甲基苯和 3-甲基戊二酸)进行比较和对比。通过这些稳健的方法和标准操作程序,我们对一系列定制设计和市售探针的探针效率、接收器噪声系数和 B0 依赖性的贡献有了更深入的了解。我们发现,在 17.6 T 条件下,平衡的 3.2 mm 设计可获得最佳的原始 SNR;在 21.1 T 条件下,平衡的 1.6 mm 设计可获得最佳的质量限制 SNR;在 21.1 T 条件下,转子大于 2.5 mm 时,原始 SNR 会达到递减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
期刊最新文献
Changing the resonant nucleus by altering the static field, compensation of γ and B0 effects in T2 and T2* measurements of porous media A compact and mobile stray-field NMR sensor Eliminating electromagnetic interference for RF shielding-free MRI via k-space convolution: Insights from MR parallel imaging advances Optimizing EPR pulses for broadband excitation and refocusing Proton hyperfine couplings and Overhauser DNP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1